Что называется шириной интерференционной полосы

Введем еще два параметра интерференционной картины. Ширина интерференционной полосы – это расстояние между двумя соседними минимумами, а расстояние между двумя интерференционными полосами – это расстояние между двумя соседними максимумами интенсивности. Ясно, что эти оба параметра имеют одинаковое значение. Из геометрических соображений получим это.

Рассмотрим две световые волны, исходящие из точечных источников S1 и S2. n – показатель преломления среды. Экран параллелен прямой соединяющей источники. Область, в которой эти волны перекрываются, называется полем интерференции. Во всей этой области наблюдается чередование мест с максимумом и минимумом интенсивности света. Вычислим ширину полос интерференции Dx (тёмных и светлых полос). Положение точки на экране будет характеризоваться точкой x, отстоящей от центрального максимума (расположен на перпендикуляре, опущенном из середины расстояния между источниками). Установим, что источники колеблются в одинаковой фазе.

Из рисунка видно.

(1)

(2)

Измерив Dx, зная l и d можно вычислить длину волны света l. Именно так впервые вычислили длины волн разных цветов.

Когерентность

Необходимым условием интерференции волн является их когерентность. Условию когерентности удовлетворяют монохроматические волны. Однако монохроматическая волна, описываемая выражением

представляет собой абстракцию. Следовательно, рассмотренный нами процесс интерференции является идеализированным. Волны, излучаемые любыми независимыми источниками света, не могут быть монохроматическими и когерентными. Причина немонохроматичности, следовательно, некогерентности световых волн лежит в самой природе происхождения этих волн. Излучение светящегося тела слагается из волн, испускаемых атомами. Излучение каждого атома длится очень короткое время (порядка 10 -8 с). За это время возбужденный атом переходит в нормальное состояние и перестает излучать. Возбудившись вновь, атом начинает испускать световые волны уже с новой начальной фазой. Разность фаз между излучением двух независимых атомов не остается постоянной, поскольку процесс излучения является случайным. Таким образом, волны испускаемые атомами, лишь короткий промежуток времени (порядка 10 -8 с) имеют приблизительно постоянные амплитуду и фазы колебаний.

Проведенные рассуждения наталкивают на вывод о принципиальной невозможности получения интерференционной картины от естественного источника световой волны. Однако интерференционные картины все-таки наблюдаются. Для их существования необходимо выполнение ряда условий. Рассмотрим их.

Введем несколько понятий и определений. Прерывистое излучение света атомами в виде отдельных коротких импульсов называется волновым цугом. Любой немонохроматический свет можно представить в виде совокупности сменяющих друг друга независимых гармонических цугов. Средняя продолжительность одного цуга называется временем когерентности . Когерентность существует только в пределах одного цуга и время когерентности не может превышать продолжительности излучения одного цуга, т.е. . Обнаружить четкую интерференционную картину можно только тогда, когда время разрешения прибора меньше времени когерентности накладываемых световых волн.

За время когерентности волна распространяется в вакууме на расстояние , равное . Расстояние называется длиной когерентности (длиной цуга). Таким образом, длина когерентности есть расстояние, при прохождении которого одна или несколько световых волн утрачивают когерентность. Следовательно, для получения интерференционной картины разность хода световых волн должна быть меньше длины когерентности для используемого источника света: .

Длина когерентности световой волны непосредственно связана со степенью монохроматичности света, равной отношению , где – конечный интервал длин волн, интерференция которых наблюдается. Эта связь выражается соотношением:

.

Таким образом, для получения интерференционной картины от реального источника излучения необходимо иметь излучение с малым значением . Это условие представляет собой способ увеличения длины когерентности. Для солнечного света . Лазеры позволили получить порядка сотен метров.

Рассмотрим для пояснения длины когерентности опыт Юнга.

В опыте Юнга интерференционная картина по мере удаления от её середины размывается. Несколько полос видны, но далее постепенно они исчезают. Почему?

Ответ ясен: потому, что степень когерентности складываемых в этих точках экрана колебаний (волн) постепенно уменьшается, и, наконец, колебания становятся полностью некогерентными.

Исходя из этого факта, попытаемся объяснить наблюдаемое с помощью следующей модели. Пусть мы видим, например, первые четыре порядка интерференции (m = 4), а затем полосы исчезают. Этот переход наблюдается довольно плавным, но мы не будем останавливаться на деталях. Исчезновение полос с m > 4 означает, что колебания, пришедшие в соответствующие точки экрана от обеих волн, оказываются уже некогерентными между собой. Т.е. пока их разность хода не превышает m = 4 длин волн, колебания в какой-то степени когерентны. Значит, вдоль распространения волны когерентными между собой будут только участки волны в этом интервале длины. Данный интервал и называется длиной когерентности . В рассмотренном случае . Заметим, что в данных условиях это простейший способ оценки длины когерентности: , где m
максимальный порядок интерференции, соответствующей ещё видимой полосе.

Всё это можно схематически представить с помощью рисунка.

В опыте Юнга, в падающие на обе щели волне длина когерентности равна . Щели создают две волны с той же длиной когерентности, но поскольку они достигают разных точек экрана с различными разностями хода, то участки когерентности обеих волн постепенно сдвигаются относительно друг друга. Начиная с m = 5, они перестают перекрывать друг друга, т.е. складываемые колебания становятся некогерентными и интерференционные полосы исчезают.

Всё сказанное, как мы увидим далее, справедливо при условии, что "первичная" щель S достаточно узкая. При расширении этой щели вступает в действие другой эффект. Рассмотрим его.

Вероятность возбуждения интерференционных колебаний, кроме временных параметров волн характеризуется также пространственной когерентностью. Эта характеристика связана с геометрическими размерами конкретной системы разделения световой волны и описывается так называемой шириной когерентности . Под шириной когерентности понимается расстояние между точками перпендикулярной к направлению распространения волны поверхности, в пределах которого волны когерентны.

Как уже говорилось, цель в опыте Юнга предполагалась весьма узкой. Часто говорят о бесконечно узкой щели. Расширение же щели, как и уменьшение степени монохроматичности света приводит к ухудшению (размытию) интерференционных полос и даже к полному их исчезновению. Чтобы выяснить роль ширины щели S, рассмотрим теперь на примере опыта Юнга другой крайний случай: излучение монохроматическое, но щель не узкая.

Интерференционную картину на экране Э можно представить как наложение интерференционных картин от бесконечно узких щелей, на которые мысленно разобьем щель S. Пусть положение максимумов на экране Э от узкой щели, взятой около верхнего края щели S – точки 1 – таково, как отмечено сплошными отрезками на рисунке. А максимумы от узкой щели, взятой около нижнего края щели S – точки 2 – будут смещены вверх, они отмечены пунктирными отрезками на этом же рисунке. Интервалы между этими максимумами заполнены максимумами от промежуточных узких щелей, расположенных между краями 1 и 2.

При расширении щели S расстояния между максимумами от её крайних элементов будут увеличиваться, т.е. интервалы между соседними максимумами от одного края щели будут постепенно заполняться максимумами от остальных элементов щели.

Для простоты будем считать, что в приведённом рисунке расстояния a = c. Тогда при ширине щели b, равной ширине интерференционной полосы Dx, интервал между соседними максимумами от края 1 будет полностью заполнен максимумами от остальных элементов щели, и интерференционные полосы исчезнут.

Итак, при расширении щели S интерференционная картина постепенно размывается и при некоторой ширине щели практически исчезает.

Это наблюдаемое явление можно объяснить иначе, а именно, интерференционная картина исчезает вследствие того, что вторичные источники – щели S1 и S2 становятся некогерентными. Сказанное позволяет говорить о ширине когерентности падающей на щели S1 и S2 световой волны – ширине , на которой отдельные участки волны в достаточной степени когерентны между собой. Во избежание недоразумений уточним: под шириной имеется в виду характерное для данной установки расстояние между точками поверхности, перпендикулярной направлению распространения волны.

Ширина когерентности связана с длиной волны соотношением

,

где – угловая ширина источника относительно интересующего нас места (например, места разделения световой волны, экрана со щелями S1 и S2).

Это значит, что ширина когерентности пропорциональна длине волны и обратно пропорциональна угловой ширине источника.

Понятно, что для обеспечения пространственной когерентности освещения щелей S1 и S2 ширина b входной щели S должна быть достаточно малой.

a – расстояние между экранами со щелями; j = b/a – угловой размер источника света – щели S.

Интерференционная картина в монохроматическом свете с длиной волны l получается отчётливой, если выполняется следующее приближённое условие.

b – ширина щели S, а 2q – апертура интерференции.

Если в качестве источника использовать непосредственно Солнце (его угловой размер 0,01 рад и lср» 0,5 мкм), то ширина когерентности hког » 0,05 мм. Поэтому для получения интерференционной картины от двух щелей с помощью такого излучения расстояние между двумя щелями должно быть меньше 0,05 мм, что сделать практически невозможно.

Общие выводы. Для получения устойчивой интерференционной картины с использованием обычных источников света необходимо исходную световую волну разделить на две части, которые дадут интерференционную картину при соблюдении двух условий:

1. Разность хода световых волн должна быть меньше длины когерентности: . Поскольку длина когерентности непосредственно зависит от монохроматичности волн и времени когерентности, это условие называется временной когерентностью волн.

2. Ширина когерентности должна превышать расстояние между некоторыми характерными световыми лучами в месте расщепления исходной волны (на рисунках это расстояние между источниками излучения и ).

В монохроматической световой волне электрическое поле и магнитное поле изменяются с постоянной частотой (циклическая частота), каждая проекция векторов и пропорциональна величине . Здесь – время, – фаза колебаний, – начальная фаза, зависящая от пространственных координат. Разные проекции векторов и могут иметь различающиеся начальные фазы.

Читайте также:  13 Ватт энергосберегающая лампа соответствует

В бегущей монохроматической световой волне векторы и в каждый момент времени перпендикулярны друг другу и равны по величине (в системе единиц СГС Гаусса). Направление движения световой волны перпендикулярно обоим векторам и , то есть световая волна – поперечная волна. Если векторы и в какой-то точке пространства в какой-то момент времени не перпендикулярны друг другу или не равны по длине, то через эту точку проходит не одна волна, а несколько волн в различных направлениях.

Далее будем обсуждать только направление распространения световой волны (вектор Пойнтинга) и направление вектора , так как направление вектора однозначно ими определяется.

Пусть световая волна распространяется в направлении оси Z. Тогда вектор лежит в плоскости XY, так как перпендикулярен направлению распространения. Если вектор колеблется вдоль какой-то линии в этой плоскости, то световая волна называется линейно поляризованной. Если вектор произвольно меняется в плоскости XY, то в каждый момент времени его можно разложить на сумму двух векторов вдоль осей X и Y. Произвольную волну, распространяющуюся вдоль оси Z, можно представить, как сумму двух линейно поляризованных волн с колебанием вектора вдоль осей X и Y соответственно.

Если конец вектора вращается по окружности в плоскости XY, то такой свет называется циркулярно поляризованным или светом с круговой поляризацией. Свет поляризован по левому кругу, если в фиксированной точке при наблюдении навстречу свету вектор (как и вектор ) вращается по левому кругу, то есть против часовой стрелки. Если конец вектора описывает эллипс, то волна называется эллиптически поляризованной. Если волна монохроматическая, то конец вектора описывает эллипс, окружность, либо вектор гармонически колеблется вдоль линии.

Интенсивностью световой волны называют среднее значение модуля вектора Пойнтинга. Время усреднения либо считают равным времени регистрации света, либо равным постоянной времени приемника света. Поскольку для бегущей волны векторы и перпендикулярны, модуль вектора Пойнтинга можно найти по формуле . Если еще учесть, что , то получим выражение . Следовательно для интенсивности можно записать , где скобки означают среднее по времени значение. Эта формула приближенно верна и при сложении почти однонаправленных световых волн.

При сложении двух или нескольких световых волн складываются не интенсивности волн, а напряженности и световых полей. При этом если интенсивность суммы полей отличается от суммы интенсивностей, то говорят, что эти световые поля интерферируют. Если световые поля способны интерферировать, то их называют когерентными друг другу.

Если на пути распространения световой волны встречается препятствие, то волна его огибает, поворачивает "за угол". Это явление называется дифракцией. Препятствием, например, может быть любой объект, который не пропускает, "загораживает", часть фронта световой волны.

V. ИНТЕРФЕРЕНЦИЯ.

Явление интерференции состоит в том, что при сложении двух или нескольких световых волн, суммарная интенсивность света отличается от суммы интенсивностей. Это возможно потому, что складываются напряженности и световых волн, а интенсивность суммы световых волн можно найти, в соответствии с определением интенсивности, по формуле (в системе единиц СГС Гаусса).

Интерференцию света обычно рассматривают не в одной точке, а на плоском экране. Поэтому говорят об интерференционной картине, под которой понимают чередующиеся полосы относительно большей и меньшей интенсивности света. Основными характеристиками интерференционной картины являются ширина полос интерференции и видность интерференционной картины.

Ширина интерференционных полос – это расстояние на экране между двумя соседними светлыми или двумя темными полосами.

Здесь – интенсивность света в середине светлой полосы, – в середине ближайшей темной полосы. Более строго можно ввести понятие видности, используя понятие модуля комплексной степени когерентности [2, 3].

Видность интерференционной картины меняется в пределах от 0 до 1. Нулевая видность соответствует условию , при котором полосы просто отсутствуют (равномерно освещенная область экрана). Видность равная единице соответствует условию .

Волны с ортогональными линейными поляризациями не интерферируют, так как для них интенсивность суммарной волны всегда равна сумме интенсивностей исходных волн. В том же смысле ортогональны лево и право циркулярно поляризованные волны.

Наиболее часто обсуждаемые в задачах по оптике поляризационные устройства – поляризатор и фазовые пластинки и .

Поляризатор.

Идеальный поляризатор – это оптическое устройство, которое полностью пропускает одну линейную поляризацию и полностью поглощает ортогональную к ней поляризацию. Свет, распространяющийся в фиксированном направлении всегда можно мысленно представить как сумму двух линейно поляризованных во взаимно перпендикулярных направлениях волн, каждая из которых распространяется в том же направлении. Поляризатор оставляет одну из этих волн.

Пластинки и .

Плоскопараллельную фазовую пластинку или изготавливают из одноосного кристалла, так что направление оси кристалла лежит в плоскости пластинки. Свет, падающий перпендикулярно на фазовую пластинку, распространяется в ней в виде двух независимых световых волн линейно поляризованных во взаимно перпендикулярных направлениях. Поляризация (направление вектора ) обыкновенной волны перпендикулярна оси кристалла. Поляризация необыкновенной волны совпадает с направлением оси кристалла.

Для каждой из двух волн кристалл имеет свой показатель преломления и . От показателя преломления зависит оптическая толщина пластинки , где – геометрическая толщина. Поэтому две волны на выходе из кристалла приобретают оптическую разность хода . Если разность хода равна , то фазовая пластинка называется пластинкой . Если , то – . Подробнее понятие оптической разности хода обсуждается в одном из следующих разделов.

Эта разность хода изменяет разность фаз двух линейно поляризованных волн на величину .

Пластинка интересна тем, что она позволяет получить циркулярно поляризованный свет из линейно поляризованного и наоборот. Чтобы получить циркулярно поляризованный свет из линейно поляризованного, направление линейной поляризации на входе пластинки должно составлять угол с направлением оси кристалла (свет падает перпендикулярно пластинке). Только в этом случае амплитуды обыкновенной и необыкновенной волн в кристалле равны.

На входе в кристалл эти две волны синфазные в случае линейной поляризации падающей волны. Тогда разности хода на выходе пластинки соответствует разность фаз . За пластинкой при сложении двух линейно поляризованных волн с одинаковой амплитудой, взаимно ортогональной поляризацией и разностью фаз образуется циркулярно поляризованная волна.

Двухлучевая интерференция.

Под двухлучевой интерференцией понимают интерференционную картину, возникающую при сложении двух световых волн одинаковой частоты.

Рассмотрим простейшую задачу по интерференции. Пусть две линейно поляризованные в одном направлении световые волны приходят в одну точку экрана и имеют в этой точке зависимость напряженности электрического поля от времени в виде: и . Выразим интенсивность суммарной световой волны через одинаковую интенсивность падающих световых волн, которую обозначим , .

В этой задаче сумма интенсивностей падающих волн равна . Интенсивность суммарной волны бывает как больше, так и меньше суммы интенсивностей в зависимости от разности фаз интерферирующих волн. Светлая полоса (большая интенсивность) соответствует нулевой разности фаз, темная – разности фаз равной .

При сложении двух волн одинаковой поляризации с интенсивностями и интенсивность суммарной волны получаем аналогично:

Оптическая разность хода.

Вместо разности фаз интерферирующих волн удобно ввести в рассмотрение пропорциональную ей величину – оптическую разность хода, которая отличается множителем , где – длина световой волны.

Изменению разности фаз на соответствует изменение разности хода на .

В вакууме оптическая разность хода в отличие от разности фаз имеет наглядную интерпретацию. Если две интерферирующие волны испускаются одним источником света, то разность хода – это геометрическая разность длин путей, по которым два интерферирующих луча от одной точки источника достигли одной точки экрана.

Например, в оптической схеме опыта Юнга, изображенной на рис. 18, разность хода для точки P на экране находится по формуле:

В изотропной среде скорость света в раз меньше, чем в вакууме, здесь – показатель преломления среды. Частота света в среде и в вакууме одинакова, поэтому длина волны в среде в раз меньше. В соответствии с соотношением вместо реального уменьшения длины волны можно рассматривать неизменную и соответствующее увеличение длины пути луча. С этой целью вводится понятие оптической длины пути, которая в раз больше геометрической длины. Далее, употребляя термин "разность хода", всегда будем иметь в виду оптическую разность хода.

Заменяя разность фаз интерферирующих волн оптической разностью хода, получаем следующее выражение для интенсивности интерференционной картины:

Приемники света в оптическом диапазоне реагируют на интенсивность света, а не на напряженность электрического или магнитного полей. Поэтому измеряемые в опыте величины, ширина полос и видность, также могут быть выражены через интенсивность, а значит и через оптическую разность хода. Следовательно, понятие оптической разности хода позволяет свести оптическую задачу по интерференции к геометрической задаче отыскания разности хода.

Отметим, что разность хода лучей можно отсчитывать не только как разность длин путей от источника до точки наблюдения, но и как разность длин путей от двух точек любой поверхности равной фазы волны до точки наблюдения. При этом, конечно, две точки на поверхности равной фазы – не произвольные точки, а должны быть точками, через которые реально проходят лучи, попадающие в точку наблюдения. Так на рис. 18 , поэтому две щели находятся на поверхности равной фазы, и, следовательно, разность хода можно найти по упрощенной формуле . Этот прием часто используется при решении задач.

Ширина интерференционных полос.

Обычно экран для наблюдения интерференционной картины располагают так, чтобы оба луча и нормаль к экрану находились в одной плоскости. В этом случае ширина интерференционных полос полностью определяется углами падения световых волн на экран и длиной световой волны и не зависит от оптической схемы формирования интерферирующих волн.

Читайте также:  Чем можно заменить маленькую отвертку крестовую

Пусть две плоские световые волны падают на экран под углами и (рис. 19), точки и – середины двух соседних светлых полос на экране, – поверхность равной фазы первой волны, – поверхность равной фазы второй волны. Поверхность имеет ту же фазу, что и поверхность , так как в точке фазы двух волн одинаковые (светлая полоса). Поэтому можно считать, что это одна и та же поверхность равной фазы волны, идущей от одного точечного источника разными путями. Следовательно, оптическую разность хода, например для точки экрана , можно отсчитывать от пары точек и как бы общей поверхности равной фазы.

Из рис. 19 видно, что поверхность равной фазы первой волны еще не дошла до точки на отрезок , а поверхность второй волны уже зашла за точку на отрезок . Тогда оптическая разность хода для точки равна

Точки и – середины соседних светлых полос, тогда оптическая разность хода равна длине волны , так как при переходе по экрану на одну полосу разность хода меняется на . Выражая из этого равенства ширину полосы , и обозначая ее через , получаем

где знак ‘+’ соответствует положительным углам падения и отсчитанным в разные стороны от нормали к экрану, как на рис. 19.

В большинстве задач углы падения малы, тогда и выражение для ширины полос упрощается

где – угол между лучами сходящимися на экране.

Эта формула сводит оптическую задачу к геометрической. Для определения ширины интерференционных полос нужно построить два луча, выходящие из одной точки источника света и попадающие в одну точку экрана. Ширина полос – это отношение длины волны света к углу между лучами, сходящимися в одну точку.

Если ширины соседних полос заметно различаются, то термина "ширина полос" избегают. Такая ситуация возникает при интерференции плоской и сферической волн, например при наблюдении колец Ньютона. Кольца Ньютона наблюдаются при интерференции волны, отраженной от сферической поверхности выпуклой линзы, и волны, отраженной от плоской поверхности, соприкасающейся со сферической поверхностью линзы. В этой задаче вместо ширины полос ищут радиус светлого (или темного) кольца с произвольным номером .

Потеря полуволны.

В соответствии с формулами Френеля [2, 3] на границе раздела двух сред преломленная световая волна всегда в фазе с падающей волной, отраженная волна – либо в фазе, либо в противофазе. Иной сдвиг фазы отраженной волны возникает только в случае полного внутреннего отражения.

При нормальном падении света на границу раздела двух сред отраженная волна в точке падения будет в противофазе с падающей при отражении от оптически более плотной среды, от среды с более высоким показателем преломления. Противоположная фаза отраженной волны эквивалентна сдвигу фазы на , или изменению разности хода на . Поэтому говорят, что при отражении от оптически более плотной среды происходит потеря полуволны. При этом в выражении для оптической длины пути следует добавить (или вычесть) слагаемое .

Если одна из интерферирующих волн по пути к экрану испытала отражение с потерей полуволны, как, например, при наблюдении колец Ньютона в отраженном свете, то без учета потери полуволны в рассчитанной интерференционной картине темные полосы окажутся на месте светлых, а светлые – на месте темных.

Интерференция и закон сохранения энергии.

Совместим с помощью полупрозрачной пластинки две плоские световые волны одинаковой амплитуды, как показано на рис. 20. Тогда по формуле

можно найти интенсивность суммарной волны. Если косинус в этом выражении равен (-1), то . Куда же в таком случае делась энергия суммируемых волн? А если косинус равен (+1), то , что вдвое больше суммы интенсивностей суммируемых волн. Нет ли здесь противоречия с законом сохранения энергии?

В действительности противоречия нет, так как кроме сложения световых волн в направлении (рис. 21) происходит сложение волн в направлении . И при изменении величины косинуса в приведенной выше формуле происходит перераспределение энергии между световыми волнами, идущими в этих направлениях.

Для обоих направлений косинус будет принимать одно и тоже значение, и, если больше света идет в направлении , то, казалось бы, больше и в направлении . Противоречие с законом сохранения энергии остается?

Положение спасает потеря полуволны. Для плоскопараллельной полупрозрачной пластинки это не так очевидно, из-за многократных отражений. Задача становится более простой в случае, изображенном на рис. 22. Здесь полупространство вправо и вниз заполнено средой с показателем преломления , а совмещение световых волн происходит при отражении и преломлении света на границе среда – вакуум. Если в направлении отражение происходит с потерей полуволны, то в направлении – без потери полуволны. Следовательно, увеличение света в направлении сопровождается уменьшением интенсивности света в направлении . Таким образом, учет потери полуволны устраняет противоречие. Данный способ совмещения световых волн (в направлении или в направлении ) называется способом деления амплитуды.

Можно совмещать световые волны другим способом, как это изображено на рис. 23. Этот метод наблюдения интерференции называют методом деления волнового фронта.

В методе деления волнового фронта интерферирующие волны неизбежно складываются под некоторым углом , что приводит к появлению интерференционных полос. Энергия световой волны при этом не возникает и не пропадает, она перераспределяется между светлыми и темными интерференционными полосами.

Интересен случай, когда интерферирующие волны сходятся под малым углом , так что ширина полос оказывается много больше ширины интерферирующих пучков. Тогда, казалось бы, весь экран, на который попадает весь свет, можно одновременно сделать темной интерференционной полосой или одновременно светлой полосой. В случае темной полосы, например, энергия присутствует в каждой световой волне до совмещения волн, но не доходит до экрана и не приходит вообще никуда.

Чтобы разобраться с этим вариантом парадокса необходимо учесть дифракцию волн. Попробуйте вернуться к его рассмотрению самостоятельно после изучения темы "Дифракция".

Кольца Ньютона

При освещении пленки (пластинки) с переменной толщиной параллельным пучком света на ее поверхности возникает система интерференционных полос. Каждая из полос возникает за счет отражения от мест пластинки, имеющих одинаковую толщину (в общем случае толщина пластинки может изменяться произвольно). Интерференционные полосы, возникающие в результате интерференции от мест одинаковой толщины, называютсяполосами равной толщины.Примером полос равной толщины

являются кольца Ньютона. Кольца Ньютона наблюдаются при отражении света от соприкасающихся друг с другом плоскопараллельной толстой стеклянной пластинки и плоско-выпуклой линзы с большим радиусом кривизны (рис. 4.5). Роль тонкой пленки, от поверхностей которой отражаются когерентные волны, играет воздушный зазор (c изменяющейся толщиной b) между пластиной и линзой. При нормальном падении света полосы равной толщины имеют вид концентрических окружностей, при наклонном падении – эллипсов.

Радиусы светлых и темных колец Ньютона найдем по формуле:

, m=1, 2, 3

Четным m соответствуют радиусы светлых колец, нечетным m – радиусы темных колец. Значению m = 1 соответствует r = 0, т.е. точка в месте касания пластинки и линзы. В этой точке наблюдается минимум интенсивности, обусловленный изменением фазы на p при отражении световой волны от пластинки.

Полосы равной толщины могут наблюдаться также в клинообразной пластинке. Тогда интерференционные полосы параллельны ребру клина.

Просветление оптики

Интерференция при отражении от тонких пленок лежит в основе просветления оптики. Прохождение света через каждую преломляющую поверхность линзы сопровождается отражением примерно 4 % падающего света. В сложных объективах такие отражения совершаются многократно, и суммарная потеря светового потока достигает заметной величины. Отражения от поверхностей линз приводят к возникновению бликов. В просветленной оптике для устранения отражения света на каждую свободную поверхность линзы наносится тонкая пленка вещества с показателем преломления иным, чем у линзы. Толщина пленки подбирается так, чтобы волны, отраженные от обеих ее поверхностей, погашали друг друга. Особенно хороший результат достигается, если показатель преломления пленки равен корню квадратному из показателя преломления линзы. При этом условии интенсивность обеих отраженных от поверхностей пленки волн одинакова.

Интерференция света в тонких пленках. Полосы равной толщины и равного наклона. Кольца Ньютона.

Интерференцию света по методу деления амплитуды во многих отношениях наблюдать проще, чем в опытах с делением волнового фронта. Один из способов, использующих такой метод, – опыт Поля. В опыте Поля свет от источника S отражается двумя поверхностями тонкой прозрачной плоскопараллельной пластинки (рис. 8.7). В любую точку P, находящуюся с той же стороны от пластинки, что и источник, приходят два луча. Эти лучи образуют интерференционную картину. Рис. 8.7 Для определения вида полос можно представить себе, что лучи выходят из мнимых изображений S1 и S2 источника S, создаваемых поверхностями пластинки. На удаленном экране, расположенном параллельно пластинке, интерференционные полосы имеют вид концентрических колец с центрами на перпендикуляре к пластинке, проходящем через источник S. Этот опыт предъявляет менее жесткие требования к размерам источника S, чем рассмотренные выше опыты. Поэтому можно в качестве S применить ртутную лампу без вспомогательного экрана с малым отверстием, что обеспечивает значительный световой поток. С помощью листочка слюды (толщиной 0,03 – 0,05 мм) можно получить яркую интерференционную картину прямо на потолке и на стенах аудитории. Чем тоньше пластинка, тем крупнее масштаб интерференционной картины, т.е. больше расстояние между полосами. Полосы равного наклона Особенно важен частный случай интерференции света, отраженного двумя поверхностями плоскопараллельной пластинки, когда точка наблюдения Pнаходится в бесконечности, т.е. наблюдение ведется либо глазом, аккомодированным на бесконечность, либо на экране, расположенном в фокальной плоскости собирающей линзы (рис. 8.8). Рис. 8.8 В этом случае оба луча, идущие от S к P, порождены одним падающим лучом и после отражения от передней и задней поверхностей пластинки параллельны друг другу. Оптическая разность хода между ними в точке P такая же, как на линии DC: . Здесь n – показатель преломления материала пластинки. Предполагается, что над пластинкой находится воздух, т.е. . Так как , (h – толщина пластинки, и – углы падения и преломления на верхней грани; ), то для разности хода получаем . Следует также учесть, что при отражении волны от верхней поверхности пластинки в соответствии с формулами Френеля ее фаза изменяется на π. Поэтому разность фаз δ складываемых волн в точке P равна: , где – длина волны в вакууме. В соответствии с последней формулой светлые полосы расположены в местах, для которых , где mпорядок интерференции. Полоса, соответствующая данному порядку интерференции, обусловлена светом, падающим на пластинку под вполне определенным углом α. Поэтому такие полосы называют интерференционными полосами равного наклона. Если ось объектива расположена перпендикулярно пластинке, полосы имеют вид концентрических колец с центром в фокусе, причем в центре картины порядок интерференции максимален. Полосы равного наклона можно получить не только в отраженном свете, но и в свете, прошедшем сквозь пластинку. В этом случае один из лучей проходит прямо, а другой – после двух отражений на внутренней стороне пластинки. Однако видимость полос при этом низкая. Для наблюдения полос равного наклона вместо плоскопараллельной пластинки удобно использовать интерферометр Майкельсона (рис. 8.9). Рассмотрим схему интерферометра Майкельсона: з1 и з2 – зеркала. Полупрозрачное зеркало посеребрено и делит луч на две части – луч 1 и 2. Луч 1, отражаясь от з1 и проходя , дает , а луч 2, отражаясь от з2 и далее от , дает . Пластинки и одинаковы по размерам. ставится для компенсации разности хода второго луча. Лучи и когерентны и интерферируют. Рис. 8.9 Интерференция от клина. Полосы равной толщины Мы рассмотрели интерференционные опыты, в которых деление амплитуды световой волны от источника происходило в результате частичного отражения на поверхностях плоскопараллельной пластинки. Локализованные полосы при протяженном источнике можно наблюдать и в других условиях. Оказывается, что для достаточно тонкой пластинки или пленки (поверхности которой не обязательно должны быть параллельными и вообще плоскими) можно наблюдать интерференционную картину, локализованную вблизи отражающей поверхности. Возникающие при этих условиях полосы называютполосами равной толщины. В белом свете интерференционные полосы окрашены. Поэтому такое явление называют цветами тонких пленок. Его легко наблюдать на мыльных пузырях, на тонких пленках масла или бензина, плавающих на поверхности воды, на пленках окислов, возникающих на поверхности металлов при закалке, и т.п. Рассмотрим интерференционную картину, получаемую от пластинок переменной толщины (от клина). Рис. 8.10 Направления распространения световой волны, отраженной от верхней и нижней границы клина, не совпадают. Отраженные и преломленные лучи встречаются, поэтому интерференционную картину при отражении от клина можно наблюдать и без использования линзы, если поместить экран в плоскость точек пересечения лучей (хрусталик глаза помещают в нужную плоскость). Интерференция будет наблюдаться только во 2-й области клина, так как в 1-й области оптическая разность хода будет больше длины когерентности. Результат интерференции в точках и экрана определяется по известной формуле , подставляя в неё толщину пленки в месте падения луча ( или ). Свет обязательно должен быть параллельным ( ): если одновременно будут изменяться два параметра b и α, то устойчивой интерференционной картины не будет. Поскольку разность хода лучей, отразившихся от различных участков клина, будет неодинаковой, освещенность экрана будет неравномерной, на экране будут темные и светлые полосы (или цветные при освещении белым светом, как показано на рис. 8.11). Каждая из таких полос возникает в результате отражения от участков клина с одинаковой толщиной, поэтому их называют полосами равной толщины. Рис. 8.11 Кольца Ньютона На рис. 8.12 изображена оправа, в которой зажаты две стеклянные пластины. Одна из них слегка выпуклая, так что пластины касаются друг друга в какой-то точке. И в этой точке наблюдается нечто странное: вокруг нее возникают кольца. В центре они почти не окрашены, чуть дальше переливаются всеми цветами радуги, а к краю теряют насыщенность цветов, блекнут и исчезают. Так выглядит эксперимент, в XVII веке положивший начало современной оптике. Ньютон подробно исследовал это явление, обнаружил закономерности в расположении и окраске колец, а также объяснил их на основе корпускулярной теории света. Кольцевые полосы равной толщины, наблюдаемые в воздушном зазоре между соприкасающимися выпуклой сферической поверхностью линзы малой кривизны и плоской поверхностью стекла (рис. 8.13), называют кольцами Ньютона.

Читайте также:  Смарт часы сами отключаются
Рис. 8.12 Рис. 8.13

Общий центр колец расположен в точке касания. В отраженном свете центр темный, так как при толщине воздушной прослойки, на много меньшей, чем длина волны , разность фаз интерферирующих волн обусловлена различием в условиях отражения на двух поверхностях и близка к π. Толщинаhвоздушного зазора связана с расстоянием r до точки касания (рис. 8.13):

.

Здесь использовано условие . При наблюдении по нормали темные полосы, как уже отмечалось, соответствуют толщине , поэтому для радиуса m-го темного кольца получаем

(m = 0, 1, 2, …).

Если линзу постепенно отодвигать от поверхности стекла, то интерференционные кольца будут стягиваться к центру. При увеличении расстояния на картина принимает прежний вид, так как место каждого кольца будет занято кольцом следующего порядка. С помощью колец Ньютона, как и в опыте Юнга, можно сравнительно простыми средствами приближенно определить длину волны света.

Полосы равной толщины можно наблюдать и с помощью интерферометра Майкельсона, если одно из зеркал з1 или з2 (рис. 8.9) отклонить на небольшой угол.

Итак,полосы равного наклонаполучаются при освещении пластинки постоянной толщины ( ) рассеянным светом, в котором содержатся лучи разных направлений.Полосы равной толщинынаблюдаются при освещении пластинки переменной толщины (клина) ( ) параллельным пучком света. Полосы равной толщины локализованы вблизи пластинки.

Применение интерференции света.

Явление интерференции обусловлено волновой природой света; его количественные закономерности зависят от длины волны. Поэтому это явление применяется для подтверждения волновой природы света и для измерения длин волн (интерференционная спектроскопия).

Явление интерференции применяется также для улучшения качества оптических приборов (просветление оптики) и получения высокоотражающих покрытий. Прохожде­ние света через каждую преломляющую поверхность линзы, например через границу стекло — воздух, сопровождается отражением ≈4% падающего потока (при показа­теле преломления стекла ≈1,5). Так как современные объективы содержат большое количество линз, то число отражений в них велико, а поэтому велики и потери светового потока.

Для устранения недостатков осуществляют так называемое просветле­ние оптики. Для этого на свободные поверхности линз наносят тонкие пленки с показа­телем преломления, меньшим, чем у материала линзы. Если оптическая толщина пленки равна λ/4, то в результате интерференции наблюдается гашение отраженных лучей. Так как добиться одновременного гашения для всех длин волн невозможно, то это обычно делается для наиболее восприимчивой глазом длины волны 0,55 мкм. Поэтому объективы с просветленной оптикой имеют синевато-красный оттенок.

Создание высокоотражающих покрытий стало возможным лишь на основе многолучевой интерференции. В отличие от двухлучевой интерференции многолучевая интерференция возникает при наложении большого числа когерентных световых пучков.

Многолучевую интерференцию можно осуществить в многослойной системе чередующихся пленок с разными показателями преломления (но одинаковой оптической толщиной, равной λ/4), нанесенных на отражающую поверхность. Например, система из семи пленок для области 0,5 мкм дает коэффициент отражения 96% (при коэффициенте пропускания 3,5% и коэффициенте поглощения -7 м) определения размеров изделий (измерения длины тел, длины волны света, изменения длины тела при изменении температуры (интерференционный дилатометр).

Интерферометры — очень чувствительные оптические приборы, позволяющие определять незначительные изменения показателя преломления прозрачных тел (газов, жидких и твердых тел) в зависимости от давления, температуры, примесей и т. д., измеряются весьма малые концентрации примесей в газах и жидкостях. Использование таких точных оптических приборов позволит технологически контролировать качество питьевой воды.

Микроинтерферометр (комбинация интерфе­рометра и микроскопа), служащего для контроля чистоты обработки поверхности. С помощью интерференционных методов проверяется качество шлифовки линз и зеркал, что очень важно при изготовлении оптических приборов, используемых также и в строительной технике. Интерферометры позволяют проводить измерения углов, исследования быстропротекающих процессов, обтекающем летательные аппараты и т.д.

С помощью интерферометров можно измерить коэффициенты линейного расширения твердых тел, что весьма является важным в связи с созданием новых строительных материалов и новых технологий получения металлопластмассовых и пластиковых строительных изделий. Интерферометры позволяют контролировать качество шлифовки поверхностей. Если на поверхности имеется царапина или вмятина, то это приводит к искривлению интерференционных полос. По характеру искривления полос можно судить о глубине царапины, такие исследования поверхности новых строительных материалов для новейших строительных технологий является важным.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Учись учиться, не учась! 10638 – | 8009 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Оцените статью
Добавить комментарий

Adblock detector