No Image

Что такое число степеней свободы молекул газа

СОДЕРЖАНИЕ
0 просмотров
22 января 2020

Сте́пени свобо́ды — характеристики движения механической системы. Число степеней свободы определяет минимальное количество независимых переменных (обобщённых координат), необходимых для полного описания состояния механической системы. Строгое теоретико-механическое определение: число степеней свободы механической системы есть размерность пространства её состояний с учётом наложенных связей.

Также число степеней свободы равно полному числу независимых уравнений второго порядка (таких, как уравнения Лагранжа) или половине числа уравнений первого порядка (таких, как канонические уравнения Гамильтона), полностью описывающих [1] динамику системы.

Содержание

Состояние физической системы [ править | править код ]

Подавляющее большинство физических систем может находиться не в одном, а во многих состояниях, описываемых как непрерывными (например, координаты тела), так и дискретными (например, квантовые числа электрона в атоме) переменными. Независимые «направления», переменные, характеризующие состояния системы, называются степенями свободы.

При этом важно отметить, что число степеней свободы равно минимальному количеству таких переменных, необходимому для полного описания состояния системы. Например, положение математического маятника можно характеризовать как углом его поворота вокруг оси, так и двумя координатами положения материальной точки относительно оси. Однако у такого маятника всего лишь одна степень свободы, а не две (как может показаться во втором случае), поскольку одного только угла поворота достаточно для описания положения этой системы в любой момент времени.

Примеры [ править | править код ]

  • Простейшая механическая система — материальная точка в трёхмерном пространстве — обладает тремя степенями свободы, так как её состояние полностью описывается тремя пространственными координатами.
  • Абсолютно твёрдое тело обладает шестью степенями свободы, так как для полного описания положения такого тела достаточно задать три координаты центра масс и три угла, описывающих ориентацию тела (эти величины известны в быту как «наклон, подъём, поворот», в авиации их называют «крен, тангаж, рыскание»). Их также называют углами Эйлера (прецессии, нутации и собственного вращения).
  • Реальные тела обладают огромным числом степеней свободы (порядка числа частиц, из которых состоит тело). Однако в большинстве ситуаций оказывается, что наиболее важны лишь несколько «коллективных» степеней свободы, характеризующих движение центра масс тела, вращение тела, его деформацию, его макроскопические колебания. Остальные же — микроскопические степени свободы незаметны по отдельности, а воспринимаются сразу все вместе, как, например, температура и давление.

Обобщённые координаты [ править | править код ]

Понятие степени свободы связано с таким понятием, как размерность. В математике размерность — это количество независимых переменных, необходимых для описания состояния объекта, или, другими словами, для определения его положения в неком абстрактном пространстве.

При математическом описании состояния физической системы N степеням свободы отвечают N независимых переменных, называемых обобщёнными координатами.

В случае непрерывных степеней свободы соответствующие обобщённые координаты принимают непрерывный ряд значений. Однако можно рассматривать и дискретные степени свободы.

Примеры [ править | править код ]

  • Для того, чтобы описать положение окружности на плоскости, достаточно трёх параметров: двух координат центра и радиуса, то есть пространство окружностей на плоскости трёхмерно. Окружность может быть перемещена в любую точку плоскости и её радиус может быть изменён, поэтому у неё три степени свободы.
  • Для того, чтобы определить координаты объекта на географической карте, нужно указать широту и долготу. Соответствующее пространство поэтому называется двумерным. Объект может располагаться в любой точке, поэтому у каждого объекта на карте две степени свободы.
  • Для задания положения самолёта нужно указать три координаты — дополнительно к широте и долготе нужно знать высоту, на которой он находится. Поэтому пространство, в котором находится самолёт, является трёхмерным. К этим трём координатам может быть добавлена четвёртая (время) для описания не только текущего положения самолёта, но и момента времени. Если добавить в модель ориентацию (крен, тангаж, рыскание) самолёта, то добавятся ещё три координаты и соответствующее абстрактное пространство модели станет семимерным.

Степени свободы в статистической физике и термодинамике [ править | править код ]

В статистической физике и термодинамике, говоря о степенях свободы, иногда имеют в виду тесно связанное с описанным выше, но несколько модифицированное понятие.

Дело в том, что в этом случае прежде всего интересует полная энергия, приходящаяся на степень свободы. А у каждой колебательной степени свободы имеется как кинетическая, так и потенциальная энергия.

Классическая теорема о распределении энергии по степеням свободы [2] гласит: при термодинамическом равновесии кинетическая энергия в среднем равномерно распределяется по всем степеням свободы, по kT/2 на каждую степень свободы. При этом на каждую степень свободы, имеющую и потенциальную энергию (зависящую от данной координаты), потенциальная энергия также добавляется к полной энергии системы, а для колебательных степеней свободы средняя кинетическая и средняя потенциальная энергия равны (это утверждение является точным для гармонических осцилляторов, однако является хорошим приближением и при некотором ангармонизме).

Таким образом, оказывается, что при вычислении внутренней энергии системы каждая колебательная степень свободы учитывается дважды. Поэтому иногда, для простоты подсчётов используют формулу

k T N f / 2 , <displaystyle kTN_/2,>

где под N f <displaystyle N_> понимают количество степеней свободы не в обычном смысле, а в смысле распределения полной энергии, то есть каждая колебательная степень свободы учитывается дважды (как «колебательная кинетическая» плюс как «колебательная потенциальная», то есть в этом смысле можно говорить, что каждой колебательной степени свободы соответствуют две степени свободы в термодинамическом смысле. Остальные степени свободы (поступательные и вращательные) учитываются просто, без удвоения (так как этим видам движения соответствует нулевая — говоря точнее, пренебрежимо малая — потенциальная энергия).

Таким образом, в статистической физике нередко под степенями свободы понимают координаты не в конфигурационном пространстве, а в фазовом пространстве, т.е. считают за различные степени свободы обобщённые координаты и обобщённые импульсы. В этом случае вносят одинаковый в классическом приближении (т.е. с некоторыми оговорками – просто при достаточно высоких температурах) вклад в полную энергию – по k T / 2 <displaystyle kT/2> каждая – только те из них, которые входят в выражение для энергии квадратически.

Вымораживание степеней свободы [ править | править код ]

Квантовомеханическое рассмотрение показывает, что разные степени свободы могут быть активны или неактивны вот в каком смысле: если некоторое движение имеет дискретный спектр (а дискретный спектр соответствует всякому связанному состоянию), то оно может возбуждаться (система переходит на более высокий энергетический уровень) только при поглощении энергии большей, чем разность энергии первого возбуждённого и основного состояния (энергии возбуждения). Поэтому если система (молекула, атом) вначале находится в основном состоянии и происходит взаимодействие с частицей, которая может отдать лишь энергию меньшую, чем энергия возбуждения (например с фотоном более низкой энергии или с молекулой, энергия движения которой меньше, чем этот порог) данная степень свободы никак не проявляется (движение, связанное с ней, не может возникнуть; говоря точнее, оно не может измениться, эта степень свободы остаётся в основном состоянии). Это называется вымораживанием степени свободы (конечно же, даже у одной и той же системы разные степени свободы могут иметь одинаковые или разные энергии возбуждения, и поэтому быть вымороженными или не вымороженными для взаимодействия с частицами разных энергий).

Читайте также:  Топ ноутбуков трансформеров 2018

Это в полной мере относится к проявлению разных степеней свободы при различных температурах.

Действительно, при определённой температуре энергия движения частиц имеет в среднем величину порядка kT, следовательно все степени свободы, энергия возбуждения которых много больше, будут выморожены (их можно не учитывать в статистике). В связи с этим для каждой конкретной степени свободы каждой системы (атома, молекулы, кристалла и т. д.) вводится понятие температуры вымораживания (равной энергии возбуждения, делённой на постоянную Больцмана). При температурах много ниже температуры вымораживания степень свободы не проявляется (находится в основном состоянии и обычно может просто никак не учитываться), при много больших — степень свободы полностью «включена» и движение по ней может рассматриваться как классическое, при температурах же порядка температуры вымораживания происходит постепенное [3] включение степени свободы при повышении температуры или постепенное выключение при понижении.

Описанное объясняет изменение теплоемкости различных веществ с температурой. Классическая статистическая физика говорит о равномерном распределении энергии по степеням свободы (здесь термин степень свободы понимается в термодинамическом смысле, см. выше). Однако очевидно, что на самом деле (учитывая квантовомеханическую коррекцию) это утверждение следует относить только к «включённым» степеням свободы, то есть исключая вымороженные. Следовательно, молярная теплоемкость будет

c = 1 2 k N f , <displaystyle c=<frac <1><2>>kN_,>

где k — постоянная Больцмана, Nf — количество степеней свободы данного типа в рассматриваемой системе (в частности, если речь идёт о совокупности молекул, N f = N i , <displaystyle N_=Ni,> где N — количество молекул, i — количество степеней свободы одной молекулы).

Степени свободы молекулы [ править | править код ]

U = i 2 ⋅ m μ R T <displaystyle U=<frac <2>>cdot <frac <mu >>RT> ,

и прямо связанная с ней формула для средней энергии молекулы идеального газа

U 1 = i 2 k T <displaystyle U_<1>=<frac <2>>kT> ,

i <displaystyle i> количество степеней свободы молекулы газа, ν = m μ <displaystyle
u =<frac <mu >>> — количество газа ( m <displaystyle m> — масса, μ <displaystyle mu > — молярная масса газа), R <displaystyle R> — универсальная газовая постоянная, k <displaystyle k> — константа Больцмана, T <displaystyle T> — абсолютная температура газа.

Степени свободы молекулы вымораживаются, как это описано в параграфе выше, что означает, что эффективное i в формуле зависит от температуры и, вообще говоря, не может быть просто вычислено классическим механическим способом.

Все вращательные степени свободы у одноатомных молекул и вращательная степень свободы, соответствующая вращению вокруг продольной оси у линейных (в реальном геометрическом смысле) молекул, выморожены (то есть не должны учитываться в i) всегда, поскольку их температуры вымораживания настолько высоки, что диссоциация молекул происходит гораздо раньше, чем эти температуры достигаются.

Числом степеней свободы механической системы называется число независимых координат, полностью определяющих положение системы в пространстве.

На рис. 1.1 показаны одноатомная, двухатомная и трехатомная молекулы. Одноатомную молекулу можно представить как материальную точку. Для определения положения точки в пространстве нужно три координаты, т. е. три степени свободы поступательного движения (i = 3).

Молекулу двухатомного газа в первом приближении можно рассматривать как совокупность двух жестко связанных материальных точек. Эта молекула кроме трех степеней свободы поступательного движения имеет две степени свободы вращательного движения (i = 5). Вращение вокруг оси, проходящей через оба атома, не учитывается.

Трехатомная молекула с жесткими связями имеет 6 степеней свободы: 3 – поступательного и 3 – вращательного движения (i = 6).

В классической физике принят постулат о равномерном распределении энергии по степеням свободы. На каждую степень свободы любого вида движения приходится энергия, равная 1/2(kT). Таким образом, средняя энергия одной молекулы равна

(1.1)

Температура и ее измерение.

Температура с молекулярно-кинетической точки зрения — физическая величина, характеризующая интенсивность хаотического, теплового движения всей совокупности частиц системы и пропорциональная средней кинетической энергии поступательного движения одной частицы.

Связь между кинетической энергией, массой и скоростью выражается следующей формулой:

(1.2)

Таким образом, частицы одинаковой массы и значения скорости имеют одну и ту же температуру. C точки зрения молекулярно-кинетической теории молекулы нагретого тела находятся в хаотическом движении. Причем, чем выше температура T, тем больше средняя кинетическая энергия хаотического движения молекул .

Так как энергия равномерно распределяется по степеням свободы, то связь между средней кинетической энергией поступательного движения молекулы и абсолютной температурой для идеального газа дается формулой

(1.3)

где k – постоянная Больцмана, .

Следовательно, абсолютная температура есть мера средней кинетической энергии поступательного движения молекулы. Формула (4.7) позволяет выяснить смысл абсолютного нуля: , если . Т. е. абсолютный нуль – это температура, при которой прекращается всякое хаотическое движение молекул.

Давление может быть выражено через среднюю кинетическую энергию поступательного движения молекулы. Если воспользоваться формулами (1.1.) и (1.3), то получим

(1.4)

Уравнение (4.8) называется основным уравнением молекулярно-кинетической теории. Давление идеального газа равно двум третям средней кинетической энергии поступательного движения молекул, заключенных в единице объема.

Для измерения температуры выбирается некоторый термодинамический параметр термометрического вещества. Изменение этого параметра однозначно связывается с изменением температуры.

Большинство термометров измеряют собственную температуру. Средства измерения температуры обычно проградуированы по относительным шкалам — Цельсия или Фаренгейта.

На практике для измерения температуры используют:

  • жидкостные и механические термометры,
  • термопару,
  • термосопротивление
  • термометр сопротивления
  • тазовый термометр
  • тирометр

Жидкостные термометры основаны на принципе изменения объёма жидкости, которая залита в термометр (обычно это спирт или ртуть), при изменении температуры окружающей среды. В связи с запретом применения ртути во многих областях деятельности ведется поиск альтернативных наполнений для бытовых термометров. Например, такой заменой может стать сплав галинстан.

Механические термометры действуют по тому же принципу, что и жидкостные, но в качестве датчика обычно используется металлическая спираль или лента из биметалла.

Термометры на термопарах основаны контактной разности потенциалов – контакт между металлами с разной электроотрицательностью создаёт контактную разность потенциалов, зависящую от температуры.

Термометры сопротивления являются наиболее точными и стабильными во времени. В основе их работы лежит зависимость электрического сопротивления от температуры платиновой проволоки или платинового напыления на керамику. Температурный диапазон −200 — + 850 C.

Газовый термометр – прибор для измерения температуры, основанный на законе Шарля, который установил прямую пропорциональную зависимость между давлением газа и температурой при постоянном объеме. Наиболее точные результаты получаются, если в качестве рабочего тела использовать водород или гелий.

Пирометр – прибор для бесконтактного измерения температуры тел. Принцип действия основан на измерении мощности теплового излучения объекта измерения преимущественно в диапазонах инфракрасного излучения и видимого света. Например, позволяют визуально определять температуру нагретого тела путем сравнения его цвета с цветом эталонной нити.

Читайте также:  Электросамокат с самой большой нагрузкой

Шкалы температур

Из того, что температура — это кинетическая энергия молекул, ясно, что наиболее естественно измерять её в энергетических единицах (т.е. в системе СИ в джоулях). Однако измерение температуры началось задолго до создания молекулярно-кинетической теории, поэтому практические шкалы измеряют температуру в условных единицах – градусах.

Шкала Кельвина. Понятие абсолютной температуры было введено У. Томсоном (Кельвином), в связи с чем шкалу абсолютной температуры называют шкалой Кельвина или термодинамической температурной шкалой. Единица абсолютной температуры – кельвин (К).

Абсолютная шкала температуры называется так, потому что мера основного состояния нижнего предела температуры – абсолютный ноль, то есть наиболее низкая возможная температура, при которой в принципе невозможно извлечь из вещества тепловую энергию. Абсолютный ноль определён как 0 K, что равно −273.15 °C (точно). Шкала температур Кельвина, в которой начало отсчёта ведётся от абсолютного нуля.

Шкала Цельсия. В технике, медицине, метеорологии и в быту используется шкала Цельсия. В этой шкале за 0 принимают точку замерзания воды, а за 100° – точку кипения воды при нормальном атмосферном давлении.

Поскольку температура замерзания и кипения воды недостаточно хорошо определена, в настоящее время шкалу Цельсия определяют через шкалу Кельвина: градус Цельсия равен кельвину, абсолютный ноль принимается за −273,15° C. Шкала Цельсия практически очень удобна, поскольку вода очень распространена на нашей планете и на ней основана наша жизнь. Ноль Цельсия – особая точка для метеорологии, поскольку связана с замерзанием атмосферной воды. Шкала предложена Андерсом Цельсием в 1742 г.

Шкала Фаренгейта. В Англии и, в особенности, в США используется шкала Фаренгейта. Ноль градусов Цельсия – это 32 градуса Фаренгейта, а градус Фаренгейта равен 5/9 градуса Цельсия. В настоящее время принято следующее определение шкалы Фаренгейта: это температурная шкала, 1 градус которой (1 F) равен 1/180 разности температур кипения воды и таяния льда при атмосферном давлении, а точка таяния льда имеет температуру +32 F. Температура по шкале Фаренгейта связана с температурой по шкале Цельсия (t°С) соотношением t°С = 5/9 (t°F – 32), 1 F = 9/5°С + 32. Предложена Г. Фаренгейтом в 1724.

Шкала Реомюра предложена в 1730 году Р.А. Реомюром, который описал изобретённый им спиртовой термометр. Во многих информационных изданиях утверждается, что шкала термометра Реомюра определялась двумя опорными точками замерзания и кипения воды. На самом деле опорная точка в первом термометре Реомюра была одна. Не стоит забывать, что первый термометр Реомюра был заполнен спиртом, температура кипения которого составляет 80 градусов по Цельсию (≈78 градусов Цельсия), что ниже температуры кипения воды.

Естественно, измерить своим термометром температуру в 100 градусов по Цельсию он не мог, спирт бы кипел. Вместо этого Реомюр кратковременно опускал колбу термометра в кипящую воду и в тот момент, когда спирт закипал, отмечал его уровень на стеклянной трубке. Затем он вытаскивал термометр, ждал, пока кипение прекратится, и повторял эксперимент снова. Так образом им был найден максимальный уровень, при котором спирт начинал кипеть.

Спирт при этом расширился на 8 % от своего первоначального объёма и его уровень в стеклянной трубке составил 1080 условных единиц, что соответствовало 80 градусам Реомюра. Однако, из-за того, что в качестве жидкости в те времена использовались не только спирт, но и различные его водные растворы, то многими изготовителями и пользователями термометров ошибочно считалось, что 80 градусов Реомюра это температура кипения воды.

Из равенства 100 градусов Цельсия = 80 градусов Реомюра получается 1 C = 0,8°R (соответственно 1°R = 1,25 C). Хотя на самом деле на оригинальной шкале Реомюра должно быть 1°R = 0,925 C. Ещё при жизни Реомюра были проведены измерения точки кипения воды в градусах его шкалы (но не со спиртовым термометром – это было невозможно). Для точки кипения воды в градусах Реомюра получается значение 108.

Единица – градус Реомюра (°R), 1°R равен 1/80 части температурного интервала между опорными точками – температурой таяния льда (0°R) и кипения воды (80°R) 1°R = 1,25°C. В настоящее время шкала вышла из употребления, дольше всего она сохранялась во Франции, на родине автора.

Уравнение состояния идеального газа

Самой простой системой частиц является газ. В то же время его изучение имеет большое практическое значение, хотя бы потому, что газообмен определяет состояние всей биосферы Земли, в том числе человека. Вместо реального газа, между молекулами которого действуют сложные силы взаимодействия, мы будем рассматривать физическую модель – идеальный газ.

Идеальным газом называется газ, в котором собственными размерами молекул и взаимодействием между молекулами можно пренебречь. Реальные разреженные газы ведут себя подобно идеальному, так как лишь небольшая доля молекул в них находится в состоянии соударения. Например, такие газы, как воздух, кислород, азот и т. д. при комнатной температуре и атмосферном давлении по своим свойствам близки к идеальному.

Состояние заданной массы газа определяется значениями трех термодинамических параметров: давления p, объема V и температуры T. Связь между параметрами называется уравнением состояния. Уравнение состояния идеального газа может быть записано в разных формах.

В наиболее общем виде уравнение состояния идеального газа установил эмпирически французский ученый Б.П. Клапейрон и русский ученый Д.И. Менделеев.

Для двух различных состояний уравнение Клапейрона имеет вид:

(1.5)

Уравнение Клапейрона-Менделеева имеет вид:

(1.6)

(1.7)

где p – давление; V – объем; T – термодинамическая или абсолютная температура (вычисляется по шкале Кельвина, которая связана с температурой по шкале Цельсия соотношением ); m – масса вещества, μ – молярная масса; – газовая постоянная.

Уравнение Клапейрона-Менделеева формулируется так: произведение давления идеального газа на его объем, деленное на термодинамическую температуру, есть величина постоянная для данной массы газа.

Отношение массы вещества к молярной массе называется количеством вещества:

(1.8)

и измеряется в молях.

Уравнению (1.6) можно придать другой вид. Обозначим через m – массу одной молекулы, а N – полное число молекул. Тогда

Количество вещества равно

(1.8)

Подставим (1.8) в (1.6) и получим

Отношение газовой постоянной к числу Авогадро есть постоянная Больцмана

Тогда другая форма записи уравнения состояния идеального газа имеет вид

(1.9)

Найдем связь давления и концентрации газа.

Концентрацией называется число молекул, заключенных в единице объема:

(1.10)

Из этого следует, что давление пропорционально концентрации, т. е.

(1.11)

Это еще одна форма записи уравнения состояния идеального газа.

Изопроцессы. Законы Бойля-Мариотта, Гей-Люссака, Шарля.

Состояние идеального газа определяется тремя параметрами: p – давление, V – объем и T – термодинамическая температура. Изменение хотя бы одного параметра приводит к новому состоянию. Переход системы из одного состояния в другое называется процессом.

Читайте также:  Что лучше xbox one или ps4 2018

Изопроцессом называется процесс, при котором один из параметров остается постоянным. Существует три изопроцесса, законы которых легко получить из уравнения (1.5).

1. Изотермический (при постоянной температуре). Это процесс описывается законом Бойля и Мариотта. Для данной массы газа при постоянной температуре произведение давление на объем газа есть величина постоянная (рис. 1.2, а).

. (1.12)

2. Изобарный (изобарический) – при постоянном давлении. Подчиняется закону Гей-Люссака. Для данной массы газа при постоянном давлении объем газа прямо пропорционален абсолютной температуре (рис. 1.2., б).

. (1.13)

3. Изохорный (изохорический) – при постоянном объеме. Подчиняется закону Шарля. Для данной массы газа при постоянном объеме давление газа прямо пропорционално абсолютной температуре (рис. 1.2., в).

. (1.14)

Рис. 1.2. а, б, в – изотермы, изобары и изохоры идеального газа, соответственно

Эти частные законы позволяют связать конечные параметры с начальными характеристиками.

Не нашли то, что искали? Воспользуйтесь поиском:

ФИЗИЧЕСКИЕ ОСНОВЫ ТЕРМОДИНАМИКИ

1. Первое начало термодинамики

§1. Внутренняя энергия

Всякая термодинамическая система в любом состоянии обладает энергией, которая называется полной энергией. Полная энергия системы складывается из кинетической энергии движения системы как целого, потенциальной энергии системы как целого и внутренней энергии.

h=0

Внутренняя энергия системы представляет сумму всех видов хаотического (теплового) движения молекул: потенциальную энергию из внутриатомных и внутриядерных движений. Внутренняя энергия является функцией состояния газа. Для данного состояния газа внутренняя энергия определяется однозначно, то есть является определенной функцией.

При переходе из одного состояния в другое внутренняя энергия системы изменяется. Но при этом внутренняя энергия в новом состоянии не зависти от процесса, по которому система перешла в данное состояние.

§2. Теплота и работа

Возможны два различных способа изменения внутренней энергии термодинамической системы. Внутренняя энергия системы может изменяться в результате выполнения работы и в результате передачи системе тепла. Работа есть мера изменения механической энергии системы. При выполнении работы имеет место перемещения системы или отдельных макроскопических частей относительно друг друга. Например, вдвигая поршень в цилиндр, в котором находиться газ, мы сжимаем газ, в результате чего его температура повышается, т.е. изменяется внутренняя энергия газа.

Внутренняя энергия может изменяться и в результате теплообмена, т.е. сообщения газу некоторого количества теплоты Q .

Отличие между теплотой и работой состоит в том, что теплота передаётся в результате целого ряда микроскопических процессов, при которых кинетическая энергия молекул более нагретого тела при столкновениях передаётся молекулам менее нагретого тела.

Общее между теплотой и работой, что они являются функциями процесса, т. е. можно говорить о величине теплоты и роботы, когда происходит переход системы из состояния первого в состояние второе. Теплота и робота не является функцией состояния, в отличие от внутренней энергии. Нельзя говорить, чему равна работа и теплота газа в состоянии 1, но о внутренней энергии в состоянии 1 говорить можно.

§3 I начало термодинамики

Допустим, что некоторая система (газ, заключённый в цилиндре под поршнем), обладая внутренней энергией, получила некоторое количество теплоты Q , перейдя в новое состояние, характеризуемой внутренней энергии U 2 , совершила работу А над внешней средой, т. е. против внешних сил. Количество теплоты считается положительным, когда оно подводится к системе, и отрицательным, когда забирается у системы. Работа положительна, когда она совершается газом против внешних сил, и отрицательна, когда она совершается над газом.

I начало термодинамики : Количество тепла (Δ Q ), сообщённой системе идёт на увеличение внутренней энергии системы и на совершение системой работы (А) против внешних сил.

Запись I начало термодинамики в дифференциальной форме

dU – бесконечно малое изменение внутренней энергии системы

– элементарная работа, – бесконечное малое количество теплоты.

Если система периодически возвращается в первоначальное состояние, то изменение ее внутренней энергии равно нуля. Тогда

т. е. вечный двигатель I рода, периодически действующий двигатель, который совершал бы большую работу, чем сообщённая ему извне энергия, невозможен (одна их формулировок I начало термодинамики).

§2 Число степеней свободы молекулы. Закон о равномерном

распределении энергии по степеням свободы молекулы

Число степеней свободы: механической системы называется количество независимых величин, е помощью которых может быть задано положение системы. Одноатомный газ имеет три поступательные степени свободы і = 3 , так как для описания положения такого газа в пространстве достаточно трёх координат (х, у, z ).

Жесткой связью называется связь, при которой расстояние между атомами не изменяется. Двухатомные молекулы с жесткой связью ( N 2 , O 2 , Н2 ) имеют 3 поступательные степени свободы и 2 вращательные степени свободы: i = i пост + i вр =3 + 2=5.

Поступательные степени свободы связаны с движением молекулы как целого в пространстве, вращательные – с поворотом молекулы как целого. Вращение относительного осей координат x и z на угол приведет к изменению положения молекул в пространстве, при вращении относительно оси у молекула не изменяет своё положение, следовательно, координата φ y в данном случае не нужна. Трехатомная молекула с жёсткой связью обладает 6 степенями свободы

i = i пост + i вр =3 + 3=6

Если связь между атомами не жесткая, то добавляются колебательные с тепени свободы. Для нелинейной молекулы ікол . = 3 N – 6 , где N – число атомов в молекуле.

Независимо от общего числа степеней свободы молекул 3 степени свободы всегда поступательные. Ни одна из поступательных степеней не имеет преимущества перед другими, поэтому на каждую из них приходится в среднем одинаковая энергия, равна 1/3 значения

Больцман установил закон, согласно которому для статистической системы (т. е. для системы у которой число молекул велико), находящейся в состоянии термодинамического равновесия на каждую поступательную и вращательную степень свободы приходится в среднем кинематическая энергия, равная 1/2 kT , и на каждую колебательную степень свободы – в среднем энергия, равная kT . Колебательная степень свободы «обладает» вдвое большей энергией потому, что на нее приходится не только кинетическая энергия (как в случае поступательного и вращательного движения), но и потенциальная энергия, причем таким образом средняя энергия молекулы

Мы будем рассматривать молекулы с жесткой связью, поэтому

так как в идеальном газе взаимная потенциальная энергия молекул равна нулю (молекулы не взаимодействуют между собой), то внутренняя энергия 1 моля равна произведению средней энергии одной молекулы на число молекул в моле вещества, то есть на число Авогадро

Для молей газа

§3 Теплоемкость. Работа газа

1. Удельная теплоемкость вещества – величина равная количеству теплоты, необходимому для нагревания 1 кг вещества на 1К.

Молярная теплоемкость С – величина равная количеству теплоты, необходимому для нагревания 1 моля вещества на 1К.

Связь молярной и удельной теплоемкости

Различают теплоемкости при постоянном объеме CV ( v = const ) и постоянном давлении Cp ( p = const ), если в процессе нагревания вещества его объем или давление поддерживается постоянным.

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector