No Image

Что такое dsd формат аудио

СОДЕРЖАНИЕ
0 просмотров
22 января 2020

DSD (англ. Direct Stream Digital ) — однобитный аудиоформат, разработанный компаниями Sony и Philips, в котором используется кодирование плотностно-импульсной модуляцией (англ. Pulse Density Modulation (PDM), разновидность сигма-дельта-модуляции) и применяется для хранения звукозаписей на оптическом носителе SACD. Изначально предполагался как архивный формат звукозаписывающей компании Sony Music для перевода музыкального архива в цифровой формат.

Содержание

Одноразрядное квантование [ править | править код ]

Аналоговый звуковой сигнал конвертируется в цифровой с помощью дельта-сигма модуляции при частоте дискретизации 2,8224 МГц (в 64 раза больше, чем у CD Audio), но с разрешением всего 1 бит, в отличие от используемых в формате CD 16 бит при частоте 44,1 кГц. Преобразование, при котором отсчёты аналогового сигнала берутся с частотой, многократно превышающей верхнюю граничную частоту сигнала называется передискретизацией (англ. oversampling ).

Избыточность дискретизации способствует уменьшению шума квантования, являющегося продуктом процесса квантования аналогового сигнала по времени. При равномерном законе распределения спектра шума квантования его модуль спектральной плотности мощности уменьшается благодаря увеличению частоты Найквиста (Котельникова) при передискретизации, то есть шум распределяется на более широкую полосу частот. [1] При этом мощность шума в частотном диапазоне, занимаемом полезным сигналом, уменьшается пропорционально повышению частоты дискретизации. Таким образом, отношение сигнал/шум увеличивается, когда частота дискретизации становится больше. Передискретизация позволяет избежать необходимости предварительного фильтрования и сохраняет гармоники в их первоначальном состоянии (хотя они могут оказаться задавленными шумом квантования, особенно на высоких частотах). Фазовая характеристика становится более схожей с высокочастотной характеристикой аналоговых систем.

Чтобы иметь ещё меньший уровень шумов в пределах частотного диапазона полезного сигнала, дельта-сигма модуляция применяет технологию формирования шума (англ. noise shaping ), которая перемещает большую часть шумов за пределы слышимого диапазона. Формирование шума является основой уменьшения шума квантовая сигнала в области полезных частот. Без неё избыточность дискретизации не давала бы значительного прикладного эффекта. Полученные одноразрядные синхронные [2] импульсы записываются напрямую на носитель.

Значение амплитуды аналогового сигнала в каждый момент представляется в виде плотности импульсов, из-за чего этот метод иногда называют плотностно-импульсной модуляцией Pulse-density modulation (англ.) русск. (PDM).

Цифро-аналоговое преобразование состоит в фильтрации одноразрядного представления для удаления ультразвуковых шумов.

Преимущества формата [ править | править код ]

  • превосходные частотные и фазовые характеристики;
  • помехоустойчивость;
  • более простая коммутация;
  • снижение влияния ошибок;
  • возможность усовершенствования без ущерба для совместимости носителей.
  • однобитный формат DSD не нуждается в кадровой структуре и не требует многоразрядных шин, что даёт несколько важных технических преимуществ:
  • соединение осуществляется одной парой проводников (как в аналоговой технике);
  • нет необходимости создания буфера для хранения многоразрядного слова. Поскольку система одноразрядная, нет также необходимости усложнять её синхронизацией;
  • эффекты задержек отсчётов (джиттер) незначительны, поскольку задержка нескольких отсчётов при передискретизации оказывает на аудиосигнал минимальное влияние, так как даже при самой высокой частоте сигнала составляет малую часть периода; в многоразрядных системах задержка на один отсчёт будет равняться уже половине периода высокочастотных компонентов сигнала.
  • блоки обработки и микросхемы имеют меньше соединений и могут использовать последовательный интерфейс.
  • DSD способен обеспечить динамический диапазон 120 дБ от 20 Гц до 20 кГц. Значительное повышение уровня шума происходит за границей слышимого диапазона свыше 20 кГц [3] .
  • Форматы [ править | править код ]

    Для возможности записи, минуя преобразования в ИКМ, в 2000 году был разработан файловый формат DSDIFF (англ. Direct Stream Digital Interchange File Format ) [4]

    Для снижения занимаемого дискового пространства и для уменьшения полосы передачи необходимых для DSD применяется сжатие звука без потерь DST (англ. Direct Stream Transfer ). В 2005 году DST стандартизован как MPEG-4 Аудио стандарт (ISO/IEC 14496-3:2001/Amd 6:2005 — Кодирование без потерь звука с передискретизацией) [5] . В 2007 году была опубликована эталонная реализация MPEG-4 DST как ISO/IEC 14496-5:2001/Amd.10:2007 [6] .

    Некоторые профессиональные звукозаписывающие системы могут производить запись непосредственно в DSD. Для высококачественной записи выпускаются модели со 128-кратной передискретизацией, так что частота дискретизации получается равной 5,6 МГц, как например Korg MR-1000. Разработаны и более продвинутые форматы DSD – DSD128, DSD256, DSD512 со 128, 256 и 512 кратным превосходством в частоте семплирования соответственно в сравнении с CD (44.1 кГц) вплоть до 22579,2 кГц, что в 8 раз выше классического DSD (2 822,4 кГц).

    Из-за невозможности обработки сигнала формата DSD без преобразования в другой формат в 2004 году компанией Digital Audio Denmark был разработан ИКМ-формат для записи и обработки звука DXD с разрядностью квантования 24 или 32 бита и частотой дискретизации 352.8 кГц [7] .

    Распространение [ править | править код ]

    • Используется в носителях SACD
    • DSD-диск — оптический диск (DVD-R, DVD+R, DVD-RW или DVD+RW), содержащий файлы DSD с расширением *.DSF, который может проигрываться на компьютере или другом оборудовании, поддерживающем воспроизведение этих файлов. Содержит аудиофайлы высокого разрешения с частотой дискретизации 2822,4 кГц. Качество аудиозаписи на DSD-диске такое же, как на SACD. Фирмой Sony разработана спецификация под названием DSD Disc Format, которой пользуются некоторые звукозаписывающие фирмы для выпуска DSD-дисков. Этот формат является открытым, и при наличии специального ПО такой диск может быть подготовлен в бытовых условиях и содержать файлы DSD, полученные, например, через Интернет.
    • С 2011 года в Интернете стали распространяться аудиофайлы DSD, имеющие расширение DSDIFF или DSF. С помощью специального ПО и ЦАПа они могут воспроизводиться на компьютере либо могут быть преобразованы в ИКМ-файлы для последующего прослушивания [8] .

    Будущее формата [ править | править код ]

    В начале 2014 года AudioFEEL предлагает проект, комбинирующий качества DSD формата и SD-медианосителя. По замыслу, будет создан новый «популярный» медиаформат, превосходящий оптические форматы прошлого (DVD, CD, SACD и т. д.) [9] .
    Из-за недостатка интереса к формату DSD, проект будет переименован в DA[SD]. Первый плеер, совместимый с данным форматом — d-play, будет поддерживать DSD64 и DSD128, также PCM/Flac от 16/44.1 до 24бит/192кГц.

    1. Параметры DSD

    Характеристики DSD

    Аббревиатура Direct Stream Digital
    Метод кодирования аудио данных сигма-дельта модуляция (читайте подробности и смотрите видео)
    Битовая разрядность 1 бит или выше (читайте подробности о качестве звука)
    Частота дискретизации DSD 64 (2.8 МГц), DSD 128 (5.6 МГц, double), DSD 256 (11.2 МГц, quad), etc. (читайте подробности)
    Количество каналов Стерео и многоканальный
    Носители SACD оптический диск, включая hybrid SACD (с CD-аудио слоем), компьютерные файлы [SACD ISO (риппинг альбомов с SACD) и DSF, DFF, CUE+DSF/DFF] (читайте подробности)
    Спецификация "Scarlet book" (1999)
    Использование Производство музыки, домашнее hifi/hiend аудио

    Direct Stream Digital является обним из аудиофильских форматов высокого разрешения (high resolution audio). Он был создан для улучшения динамического диапазона CD-аудио в слышимой частотной области звука.

    Читайте также:  Тормозит игра ворлд оф танк что делать

    Читайте далее о вопросах качества звука (шум, битовая глубина, полоса, частота дискретизации DSD audio по сравнению с PCM).

    2. 1-бит и шум

    Как правило, этот формат имеет битовую глубину 1 бит. Поэтому уровнень шума значителен из-за ошибок квантования.

    Для снижения уровня шума в низкочастотной слышимой области используется нойз-шейпинг. Нойз-шейпинг (noice shaping, управление формой спектра шума) – это перенос энергии шума из слышимой частотной области в область ультразвука.

    Нойз-шейпинг (НШ) спектра 1-битного сигнала.
    Сигма-дельта модуляция

    В левой части изображения спектр шума имеет уровень соизмеримый с уровнем 1-битного музыкального сигнала. Устройство (или цифровая обработка), называемое сигма-дельта модулятор, "выдавливает" энергию шума из слышимой частотной области 0 . 20 кГц в область ультразвука.

    Когда такая 1-битная запись проигрывается, низко-частотный фильтр вырезает "усиленный" высокочастотный шум.

    DSD DAC (декодер , демодулятор)

    Таким образом, уровень шума 1-битного сигнала после нойз-шейпинга (сигма-дельта модуляции) становится сравнимым с уровнем шума мультибитного сигнала PCM (импульсно-кодовая модуляция).

    То есть 1-битная сигма-дельта модуляция может иметь разрешение аудио одинаковое с мультибитным сигналом. Читайте подробности и смотрите видео здесь

    3. Частоты дискретизации

    • DSD64 = 44100 * 64 = 2’822’400 Гц = 2.8 МГц
    • DSD128 = 44100 * 128 = 5’644’800 Гц = 5.6 МГц
    • DSD256 = 44100 * 256 = 11’289’600 Гц = 11.3 МГц
    • DSD512 = 44100 * 512 = 22’579’200 Гц = 22.6 МГц
    • DSD1024 = 44100 * 1024 = 45’158’400 Гц = 45.2 МГц
    • и т. д.

    Также в качестве основы может быть использовано 48000 кГц. С технической точки зрения не существует ограничения на частоту дискретизации сигма-дельта модулированного сигнала. Но возможно возникновение проблем с совместимостью.

    4. Перегрузка и устойчивость

    Когда разрабатывается сигма-дельта модулятор, инженеры обращают особое внимание на:

    • уровень шума в слышимом звуковом диапазоне и
    • устойчивость к перегрузке.

    Для решения этих проблем разработчики могут варьировать:

    • битовой глубиной,
    • частотой дискретизации,
    • нойз-шейпингом.

    Эти параметры должны рассматриваться в связи друг с другом.

    Битовая глубина

    Увеличение битового разрешения уменьшает шумы квантования (шумы ошибки квантования).

    Нойз-шейпинг

    Нойз-шейпинг "выталкивает" энергию ошибки квантования из слышимого диапазона.

    Для "выталкивания" большего количества энергии нужно более крутой нойз-шейпинг.

    Более крутой нойз-шейпинг увеличивает вероятность срыва стабильности работы сигма-дельта модулятора при перегрузке на входе.
    Когда модулятор в нестабильном состоянии, на его выходе отсутствует сигнал или генерируются колебания.
    После срыва стабильности модулятор должен быть принудительно перезапущен.

    Устойчивость сигма-дельта модулятора к перегрузке

    Частота дискретизации

    Более высокая частота дискретизации уменьшает уровень спектра ошибки квантования. Потому, что энергия шума распределяется в более широкой полосе. Это позволяет использовать более пологий нойз-шейпинг.

    Энергия – это площадь фигуры, заключенной между линеей спектра и горизонтальной осью в полосе 0 . [частота дискретизации]/2.

    Частота дискретизации и уровень шума квантования

    В правой и левой частях изображения площади фигур шума одинаковы. Но фигура, более растянутая по горизонтальной оси, дает более низкий уровень шума.

    Увеличение частоты дискретизации позволяет снизить уровень шума в полосе слышимого звука. Это позволяет уменьшить крутизну нойз-шейпинга и увеличить устойчивость модулятора к перегрузке.

    Resume

    Мы можем видеть, что более низкий уровень шума и более высокая устойчивость модулятора к перегрузке на входе могут быть достигнуты разными путями.

    Например, лучшее качество звука – это вопрос реализации нойз-шейпинга при имеющихся битовом разрешении и частоте дискретизации. Но, с другой стороны, возможно увеличить частоту дискретизации и/или количество бит для снижения ошибки квантования (уровня шума) без улучшения метода нойз-шейпинга.

    5. DSD в цифрах

    Профессиональные аудио модуляторы имеют уровень шума в слышимом звуковом диапазоне для частот дискретизации:

    • DSD64 около -125 . -145 дБ (сравнимо с PCM 24 бит)
    • DSD128 около -165 дБ (лучше, чем PCM 24 бит)
    • DSD256 и выше около -170 . -200 дБ (сравнимо с PCM 32 бит)

    Уровень шума в слышимом диапазоне почти не зависит от демодулятора. Но уровень шума должен быть максимально подавлен вне этой полосы. Так как ультразвуковой шум может привести к интермодуляционным искажениям.

    Читайте о DSD vs DSF vs DFF >

    6. DSD vs PCM

    Direct Stream Digital (сигма-дельта модуляция) очень похожа на импульсно-кодовую модуляцию (PCM), но форма спектра уровня шумов квантования изменена для уменьшения уровня шума в звуковом диапазоне.

    Также возможно применение нойз-шейпинга для обычной PCM. Но разница заключена в запасе полосы для "выталкивания" энергии шума из звукового диапазона.

    DSD против PCM

    PCM имеет меньший резерв полосы (выше звукового диапазона), чем сигма-дельта модуляция, и это обусловлено более высокой битовой глубиной и переходной полосой выходного фильтра ЦАП (цифрово-аналогового преобразователя).

    Нойз-шейпинг также может быть использован и для импульсно-кодовой модуляции.

    Таким образом, формат сам по себе не имеет преимуществ. Но его реализация может иметь различия в качестве звука.

    Декодер сигма-дельта модуляции (демодулятор) является 2-позиционым (1 / -1) формирователем напряжения и фильтром низких частот. Он проще PCM демодулятора. Потому, что импульсно-кодовый демодулятор содержит либо резисторную матрицу для формирования напряжений (R2R) или цифровой сигма-дельта модулятор с 1-битным декодером. Таким образом у нас есть больше возможностей сделать DSD ЦАП (DAC) более дешевым и лучшим по качеству, чем мультибитный ЦАП.

    Читайте подробности здесь >

    Посмотрите статью с инфографикой DSD против FLAC >

    Читайте статью о ЦАП >

    7. Форматы сжатия DSD

    1. Сигма-дельта модуляция реализована как оптический диск SACD (Super Audio CD).
    2. Этот же вид модуляции содержится в файлах DSF, DFF, SACD ISO (SACD образ диска).
    3. WAV, AIFF, FLAC контейнер с DoP-упакованным (DSD over PCM, DSD через PCM) содержимым.

    SACD диск может быть конвертирован без потерь (losslessly) в SACD ISO файл [1], [2], [3].

    SACD ISO файл может быть распакован без потерь в DSF или DFF файлы.

    Читайте подробности о файлах DSF и DFF.

    1-битные аудио файлы (DSF, DFF, SACD ISO) и диски могут быть сжаты по размеру с помощью метода DST (Direct Stream Transfer).

    DoP – это открытый протокол, который позволяет запаковывать 1-битное аудио в мультибитный формат для совместимости с программами и аппаратурой [4]. DoP не может быть воспроизведен как обычный PCM.

    Также 1-битное аудио может вещаться через сеть.

    Несжатое DSD64 требует пропускную способность 2.7 Мбит/с = 44100 Гц * 64 / 1024 / 1024.

    Источники, носители Direct Stream Digital

    Также связка индексного файла CUE и DSF/DFF аудио файла может содержать 1-битный альбом.

    8. DSD проигрыватели

    Для вопроизведения DSD на компьютере используются программные аудио плееры. Они могут проигрывать один или несколько 1-битных форматов файлов. Аппаратные DSD проигрыватели могут проигрывать как оптические SACD диски, так и файлы DSF, DFF.

    Читайте также:  Чугунная ванна jacob delafon repos отзывы

    1-битные файлы могут быть воспроизведены непосредственно через DSD ЦАП/проигрыватель или конвертированы в PCM "на лету" для проигрывания с помощью PCM ЦАП. О конвертировании SACD читайте здесь

    1-битное проигрывание может быть реализовано через специальный ASIO-драйвер (программные) под Windows, включая DoP (DSD over PCM) формат упаковки аудио (пример).

    Оптический SACD диск может быть проигран на аппаратном плеере. Автор не располагает информацией о доступных SACD-приводах для обычных компьютеров, чтобы воспроизводить SACD оптические диски.

    Стерео проигрыватель может на лету конвертировать (downmix) многоканальный звук в стерео. Как альтернатива, многоканальные файлы могут быть предварительно конвертированы в стерео. Это позволяет сэкономить ограниченное место на жестком диска портативного проигрывателя аудио (DAP). Даунмикс является обработкой с потерями. Его качество зависит от конкретной реализации.

    Читайте еще об аудио плеерах здесь > и здесь >

    9. DSD конвертеры

    DSD конвертеры предназначены для:

    • преобразования DSD в PCM,
    • преобразования PCM в DSD,
    • конвертации SACD ISO в DSD,
    • преобразования SACD ISO в PCM,
    • ресемплинг 1-битного аудио,
    • изменение уровня громкости,
    • нормализация уровня громкости,
    • подавление щелчков на границах треков,
    • другие обработки.

    Прочитайте как работают DSD аудио конвертеры здесь >

    Список конвертеров (конвертируют все или некоторые виды DSD файлов [DSF, DFF, SACD ISO])

    • AuI ConverteR 48×44
    • Audiogate
    • dff2dsf
    • iso2dsd
    • JRiver
    • Foobar2000
    • TASCAM Hi-Res Editor

    10. Редактирование DSD

    Читайте основную статью о редактировании DSD >

    DSD редактирование достаточно сложный процесс по причине модулирующего шума в области высоких частот. Нелинейные обработки могут привести к слышимым продуктам интермодуляционных искажений ультразвукового шума.

    В настоящее время автор не располагает информацией о "естественной" (native) обработке аудио 1-бит (например: изменение уровня, ресемплинг и пр.) без конвертации 1-бит в мильтибитный формат и обратно. Кроме слияния/разрезания аудио файлов.

    Редактирование DSD

    PCM в данном контексте может быть рассмотрено, как "мультибитное DSD". Импульсно-кодовая модуляция не обязательно обозначает "24 бит / 352 кГц" и т.п. Автор рекоммендует использовать 32- or 64-bit float (с плавающей запятой) форматы. Рассматриваемый PCM содержит высокочастотный модуляционный шум. Но, для конвертирования этого "мультибитного DSD" в 1-бит необходима модуляция с нойз шейпингом.

    Потери при редактировании с 1-бит/мультибит преобразованием примерно сравнимы с ресемплингом.

    Звукозаписывающие студии могут распространять DSD записи без редактирования.

    Также существует DXD формат. Это PCM (как правило, "24 bit / 352 kHz" и т.п.) с высокими частотами дискретизации, битовыми разрешениями и "наследственным" высокочастотным шумом DSD. К сожалению, этот шум может привести к слышимым продуктам нелинейных искажений. рекомендуется вырезать (фильтровать) этот шум перед нелинейными обработками.

    Цифровой звук. Как же много мифов крутится вокруг этой фразы. Сколько споров возникало между любителями удобства и качества цифры и приверженцами «живого воздушного» винилового звука помноженного на «тёплое ламповое» звучание. Кроме того, есть немало споров и между любителями «цифры»: достаточно ли 16х44.1 или нужно 24х192? Что лучше: мультибит или дельта-сигма? CDDA или SACD? PCM или DSD? В этой статье я попробую простым языком изложить азы цифрового звука, а так же более подробно остановлюсь на сравнении двух типов кодирования аналогового сигнала в цифровой: DSD и PCM.

    Для начала ответим на вопрос, что есть цифровой звук? Чем он отличаются от аналогового? Если говорить кратко, математическим языком, аналоговый звуковой сигнал — непрерывная функция, цифровой звуковой сигнал — дискретная функция. Что это значит?

    Аналоговый сигнал

    Если нарисовать в воображении график синусоиды (именно так в чаще всего изображают звуковую волну): то, как бы мы его не увеличивали, стараясь рассмотреть все детали, — всегда будем видеть плавную гладкую линию: это аналоговый звуковой сигнал (рис. 1).


    Рис. 1. Аналоговый сигнал

    Аналоговый звук (запись) имеет множество параметров, с помощью которых можно оценить его качество. Рассмотрим три самых важных: частотный диапазон, динамический диапазон, искажения.

    Частотный диапазон — набор частот, содержащихся в звуке. Принято считать, что частотный диапазон человеческого слуха 20… 20.000 Гц (иногда указывается 16 — 22.000 Гц). Сам по себе частотный диапазон музыки никакого интереса в плане оценки качества не представляет (к примеру, частотный диапазон все того же взлетающего самолета будет очень широк, а вокальной партии тенора — намного уже). Качественным параметром, скажем, наушников является потенциальный частотный диапазон, а оценивается он с помощью амплитудно-частотной характеристики (АЧХ). Идеальная АЧХ — прямая линия на всем диапазоне частот слуха – означает, что источник звука не усиливает и не ослабляет какие-то отдельные частоты, а значит извлекаемый звук совпадает с оригиналом.


    Рис. 2. АЧХ MP3 файла 256 kbps

    Динамический диапазон (ДД) — разность между самым тихим и самым громким звуком. Измеряется громкость в децибелах (дБ). Принято считать, что максимальная громкость, не наносящая травм человеку — это 130 дБ — звук взлетающего самолета, а минимальная слышимая громкость — 5… 10 дБ — на уровне шелеста листьев в маловетреную погоду. Естественно, что шелест листьев на фоне взлетающего самолета разобрать будет невозможно, да и слушать музыку с уровнем 130 дБ крайне неприятно. Поэтому принято считать, что комфортный ДД для прослушивания музыки — 80… 100 дБ.

    Искажения – не что иное, как отклонение сигнала от оригинала.

    Принципы представления звука в цифровом виде

    Что же происходит при оцифровке аналогового звука? Не будем углубляться в технические аспекты, разберем все, как говорится, на бумаге: для этого нарисуем нашу воображаемую «идеальную» синусоиду и будем измерять величину сигнала через равные промежутки времени (этот процесс называется дискретизацией или квантованием): мы получим некий последовательный набор значений — это и будет наш цифровой сигнал, полученный методом импульсно-кодовой модуляции (PCM) (рис. 3).


    Рис. 3. Преобразование аналогового сигнала в PCM

    Два основных параметра качества PCM сигнала — это частота и разрядность. Частота — это количество измерений за одну секунду, чем их больше — тем с большей точностью передаётся сигнал. Частота измеряется в герцах: 44100 Hz, 192000 Hz и др. Разрядность — количество возможных значений величины сигнала (точность передачи величины). Чем больше вариантов — тем больше точность сигнала. Разрядность измеряется в битах: 16 bit (65.536 возможных значений, ДД 96 дБ), 24 bit (16.777.216 значений, ДД 144 дБ) и др.

    Но это не единственный вариант представления звуковой волны в цифровом виде. Есть способ избавиться от такого параметра, как разрядность, оставить только два уровня амплитуды: -100% и +100% (0 или 1). Чтобы добиться этого, не потеряв в качестве, — нужно многократно увеличить частоту считывания величины сигнала (рис. 4).

    Читайте также:  Юникредитбанк банк официальный сайт личный кабинет


    Рис. 4. Преобразование аналогового сигнала в DSD

    Такой вид представления цифрового звука называется импульсно-плотностной модуляцией, чаще всего для него используется аббревиатура DSD. Фактически, единственный качественный параметр такого сигнала — частота. Но так как частоты используются очень высокие (от 2.822.400 Hz), такие цифры сложно запомнить, принято делить частоту DSD сигнала на 44.100 Hz. Полученное число и является показателем качества: DSD64 (ДД 120 дБ), DSD128, DSD256 и т.д.

    Восстановление аналогового сигнала из «цифры»

    Но оцифровка аналогового сигнала – это полдела. Для прослушивания цифровой музыки нужно выполнить обратное преобразование. Для начала рассмотрим, каким образом превратить в звук цифровой DSD поток. Как мы уже знаем, этот поток представляет из себя высокочастотный (2,8 МГц и более) двухуровневый сигнал, средняя величина этого сигнала меняется со звуковой частотой. То есть, если подходить к решению задачи максимально просто, — нужно отфильтровать все высокочастотные составляющие DSD потока, оставив только полезный звуковой сигнал (частоты до 20. 22 кГц). Делается это с помощью аналогового фильтра низкой частоты (ФНЧ). Простейший ФНЧ – это RC цепочка. Сигнал полученный, после прохождения этой цепочки, показан на рис. 5.


    Рис. 5. Восстановление аналогового сигнала из DSD

    Как видим, полученный график лишь отдаленно напоминает исходную синусоиду. Но не забываем, что мы «применили» простейший фильтр, улучшая схему фильтра можно добиться практически полного отсутствия высокочастотного шума и получить аналоговый звук с хорошими качественными показателями.

    Для восстановления аналогового сигнала из цифрового PCM недостаточно только лишь аналогового ФНЧ, нужно предварительно расшифровать цифровые данные, для этого используются цифро-аналоговые преобразователи (ЦАПы). Бывают они разных типов, но описывать их все в задачи данной статьи не входит. Остановимся на 2-х самых распространённых типах в звуковой технике. Во-первых, это так называемый ЦАП лестничного типа (его ещё называют мультибитным). Как вы, наверное, догадались, такой ЦАП преобразует PCM поток цифровых данных в поток величин звукового сигнала, которые на графике выглядят как лестница (рис. 6). Как и в случае DSD, обязательно использование аналогового фильтра для сглаживания «ступенек».


    Рис. 6. Восстановление аналогового сигнала из PCM

    Зачастую, в таких преобразователях используется промежуточная передискретизация цифрового PCM сигнала в более высокие значения частоты (например, 192 кГц): это уменьшает «ступеньки», что позволяет упростить схему аналогового фильтра.

    Второй тип ЦАП – дельта-сигма – использует передискретизацию в ещё большие значения частоты с одновременным уменьшением разрядности до одного бита. Ничего не напоминает? Это же знакомый нам DSD сигнал! Как далее обработать такой сигнал и превратить его в аналоговый, мы уже рассматривали выше.

    Применение PCM и DSD, достоинства/недостатки

    Где же мы можем встретить каждый из способов кодирования? PCM формат очень распространён: CDDA диски, DVD Audio, файлы MP3, FLAC, ALAC, AAC, звук в фильмах, и далее, и далее, проще сказать, когда не-PCM. Super Audio CD диски, DSD диски, файлы DSF, DFF — это DSD формат. Что же всё-таки лучше? При воспроизведении какого формата мы получим более качественный звук?

    В статьях, посвященных DSD формату, описано множество преимуществ перед PCM, но все ли описываемые преимущества верны или это мифы, придуманные для обывателей, не разбирающихся в технической составляющей, чтобы отвоевывать рынок, плотно занятый PCM форматом? Давайте кратенько пройдемся по списку.

    1. Первое преимущество, которое любят приводить сторонники DSD, довольно расплывчатое — помехоустойчивость и снижение влияния ошибок. Странно слышать про разную помехоустойчивость в цифровом мире: оба формата подвержены помехам ровно настолько, насколько подвержена помехам книжка в цифровом формате. Длительность хранения любого цифрового формата или качество передачи его между устройствами зависят только от носителя / способа передачи, но не от самого формата. Итак, помехоустойчивость одинаковая. А что по поводу снижения влияния ошибок? Допустим, мы храним 2 альбома на оптических дисках (один PCM, другой DSD), что будет, если диск поцарапать? При чтении поврежденного носителя будут возникать ошибки, но насколько они критичны? В PCM кодировании используются многоразрядные числа, ошибка в старшем разряде очень критична (как пример, разница между десятичными числами 11 и 91): на слух это будет ощущаться, как щелчок. В DSD кодировании один бит информации имеет небольшой вес в общем потоке, нечастые ошибки будут вызывать лишь повышение фонового шума, что на слух будет менее заметно.
    2. Второе преимущество описывается чуть конкретнее: больший динамический диапазон по сравнению с PCM. Что же, и здесь есть некоторое лукавство, ДД больше лишь по сравнению с классическим CDDA форматом: 120 … 140 дБ против 96 дБ. Если же сравнивать, например, с DVD Audio — ДД примерно одинаков.
    3. Третье преимущество: DSD более прост технически. Вот здесь поспорить не с чем: более простое декодирование сигнала, отсутствие необходимости синхронизации и буферизации потока при передаче сигнала с одного устройства на другое — полная победа DSD. Кстати говоря, на фоне этого преимущества странно видеть заоблачные цены на аппаратуру, поддерживающую воспроизведение DSD.
    4. Ну и ещё одно преимущество, которое любят приводить фанаты DSD: музыка в этом формате наиболее близка к оригинальному аналоговому звуку. Аргументируется это тем, что современные аналогово-цифровые преобразователи (АЦП) — работают на принципе дельта-сигма модуляции, то есть эти АЦП выдают цифровой DSD поток. И вот опять лукавство: запись будет полностью оригинальной только в случае прямой записи живого выступления либо при оцифровке готовой аналоговой записи с качественного носителя. Операции сведения, наложения эффектов, мастеринга, даже простой подстройки громкости — всего того, без чего не может обойтись создание студийного альбома, — невозможны для цифрой DSD записи по причине отсутствия нормальных алгоритмов ее обработки. Это означает, что все эти операции производятся с PCM форматом, и только после этого готовая PCM запись конвертируется в DSD. Впрочем, нужно отметить, что преобразование PCM > DSD и обратно — достаточно точное: лишь немного возрастает шум за пределами реального динамического диапазона (рис. 7). А значит, не имеет особого значения, в каком формате слушать запись: PCM Hi-Res или DSD — оба формата по качественным характеристикам очень схожи. Так же, фактически, нет смысла покупать отдельную звуковую карту для воспроизведения DSD, послушав совета приятеля, фаната данного формата.


    Рис. 7. Динамический диапазон / шум при преобразовании между DSD и PCM

    Комментировать
    0 просмотров
    Комментариев нет, будьте первым кто его оставит

    Это интересно
    Adblock detector