No Image

Что такое фракталы в искусстве

СОДЕРЖАНИЕ
0 просмотров
22 января 2020

Фракта́л (лат. fractus — дроблёный, сломанный, разбитый) — множество, обладающее свойством самоподобия (объект, в точности или приближённо совпадающий с частью себя самого, то есть целое имеет ту же форму, что и одна или более частей). В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической, поэтому их следует отличать от прочих геометрических фигур, ограниченных конечным числом звеньев. Самоподобные фигуры, повторяющиеся конечное число раз, называются предфракталами.

Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке в результате изучения непрерывных недифференцируемых функций (например, функция Больцано, функция Вейерштрасса, множество Кантора). Термин «фрактал» введён Бенуа Мандельбротом в 1975 году и получил широкую известность с выходом в 1977 году его книги «Фрактальная геометрия природы». Особую популярность фракталы обрели с развитием компьютерных технологий, позволивших эффектно визуализировать эти структуры.

Слово «фрактал» употребляется не только в качестве математического термина. Фракталом может называться предмет, обладающий, по крайней мере, одним из указанных ниже свойств:

  • Обладает нетривиальной структурой на всех масштабах. В этом отличие от регулярных фигур (таких как окружность, эллипс, графикгладкой функции): если рассмотреть небольшой фрагмент регулярной фигуры в очень крупном масштабе, то он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведёт к упрощению структуры, то есть на всех шкалах можно увидеть одинаково сложную картину.
  • Является самоподобным или приближённо самоподобным.
  • Обладает дробной метрической размерностью или метрической размерностью, превосходящей топологическую.

Многие объекты в природе обладают свойствами фрактала, например: побережья, облака, кроны деревьев, снежинки, система кровообращения, альвеолы.

Содержание

Примеры [ править | править код ]

Самоподобные множества с необычными свойствами в математике [ править | править код ]

Начиная с конца XIX века, в математике появляются примеры самоподобных объектов с патологическими с точки зрения классического анализа свойствами. К ним можно отнести следующие:

  • множество Кантора — нигде не плотное несчётное совершённое множество. Модифицировав процедуру, можно также получить нигде не плотное множество положительной длины;
  • треугольник Серпинского («скатерть») и ковёр Серпинского — аналоги множества Кантора на плоскости;
  • губка Менгера — аналог множества Кантора в трёхмерном пространстве;
  • примеры Вейерштрасса и Ван дер Вардена нигде не дифференцируемой непрерывной функции;
  • кривая Коха — несамопересекающаяся непрерывная кривая бесконечной длины, не имеющая касательной ни в одной точке;
  • кривая Пеано — непрерывная кривая, проходящая через все точки квадрата;
  • траектория броуновской частицы также с вероятностью 1 нигде не дифференцируема. Её хаусдорфова размерность равна двум [источник не указан 2527 дней] .

Рекурсивная процедура получения фрактальных кривых [ править | править код ]

Существует простая рекурсивная процедура получения фрактальных кривых на плоскости. Зададим произвольную ломаную с конечным числом звеньев, называемую генератором. Далее заменим в ней каждый отрезок генератором (точнее, ломаной, подобной генератору). В получившейся ломаной вновь заменим каждый отрезок генератором. Продолжая до бесконечности, в пределе получим фрактальную кривую. На рисунке справа приведены первый, второй и четвёртый шаги этой процедуры для кривой Коха.

Примерами таких кривых служат:

С помощью похожей процедуры получается дерево Пифагора.

Фракталы как неподвижные точки сжимающих отображений [ править | править код ]

Свойство самоподобия можно математически строго выразить следующим образом. Пусть ψ i , i = 1 , … , n <displaystyle psi _,,i=1,dots ,n> — сжимающие отображения плоскости. Рассмотрим следующее отображение на множестве всех компактных (замкнутых и ограниченных) подмножеств плоскости: Ψ : K ↦ ∪ i = 1 n ψ i ( K ) <displaystyle Psi colon Kmapsto cup _^psi _(K)>

Можно показать, что отображение Ψ <displaystyle Psi > является сжимающим отображением на множестве компактов с метрикой Хаусдорфа. Следовательно, по теореме Банаха, это отображение имеет единственную неподвижную точку. Эта неподвижная точка и будет нашим фракталом.

Рекурсивная процедура получения фрактальных кривых, описанная выше, является частным случаем данной конструкции. В ней все отображения ψ i , i = 1 , … , n <displaystyle psi _,,i=1,dots ,n> — отображения подобия, а n <displaystyle n> — число звеньев генератора.

Для треугольника Серпинского n = 3 <displaystyle n=3> и отображения ψ 1 <displaystyle psi _<1>> , ψ 2 <displaystyle psi _<2>> , ψ 3 <displaystyle psi _<3>> — гомотетии с центрами в вершинах правильного треугольника и коэффициентом 1/2. Легко видеть, что треугольник Серпинского переходит в себя при отображении Ψ <displaystyle Psi > .

В случае, когда отображения ψ i <displaystyle psi _> — преобразования подобия с коэффициентами 0>"> r i > 0 <displaystyle r_>0> 0"/> , размерность s <displaystyle s> фрактала (при некоторых дополнительных технических условиях) может быть вычислена как решение уравнения r 1 s + r 2 s + ⋯ + r n s = 1 <displaystyle r_<1>^+r_<2>^+dots +r_^=1> . Так, для треугольника Серпинского получаем s = ln ⁡ 3 / ln ⁡ 2 <displaystyle s=ln 3/ln 2> .

По той же теореме Банаха, начав с любого компактного множества и применяя к нему итерации отображения Ψ <displaystyle Psi > , мы получим последовательность компактов, сходящихся (в смысле метрики Хаусдорфа) к нашему фракталу.

Фракталы в комплексной динамике [ править | править код ]

Фракталы естественным образом возникают при изучении нелинейных динамических систем. Наиболее изучен случай, когда динамическая система задаётся итерациями многочлена или голоморфной функции комплексной переменной на плоскости. Первые исследования в этой области относятся к началу 20 века и связаны с именами Фату и Жюлиа.

Читайте также:  Фитнес браслет для гипертоников

Пусть F ( z ) <displaystyle F(z)> — многочлен, z 0 <displaystyle z_<0>> — комплексное число. Рассмотрим следующую последовательность: z 0 , z 1 = F ( z 0 ) , z 2 = F ( F ( z 0 ) ) = F ( z 1 ) , z 3 = F ( F ( F ( z 0 ) ) ) = F ( z 2 ) , . . . <displaystyle z_<0>,z_<1>=F(z_<0>),z_<2>=F(F(z_<0>))=F(z_<1>),z_<3>=F(F(F(z_<0>)))=F(z_<2>). >

Нас интересует поведение этой последовательности при стремлении n <displaystyle n> к бесконечности. Эта последовательность может:

  • стремиться к бесконечности,
  • стремиться к конечному пределу,
  • демонстрировать в пределе циклическое поведение, например: z 1 , z 2 , z 3 , z 1 , z 2 , z 3 , . . . <displaystyle z_<1>,z_<2>,z_<3>,z_<1>,z_<2>,z_<3>. >
  • вести себя хаотично, то есть не демонстрировать ни один из трёх упомянутых типов поведения.

Множества значений z 0 <displaystyle z_<0>> , для которых последовательность демонстрирует один конкретный тип поведения, а также множества точек бифуркации между различными типами, часто обладают фрактальными свойствами.

Так, множество Жюлиа — множество точек бифуркации для многочлена F ( z ) = z 2 + c <displaystyle F(z)=z^<2>+c> (или другой похожей функции), то есть тех значений z 0 <displaystyle z_<0>> , для которых поведение последовательности z n <displaystyle z_> может резко меняться при сколь угодно малых изменениях z 0 <displaystyle z_<0>> .

Другой вариант получения фрактальных множеств — введение параметра в многочлен F ( z ) <displaystyle F(z)> и рассмотрение множества тех значений параметра, при которых последовательность z n <displaystyle z_> демонстрирует определённое поведение при фиксированном z 0 <displaystyle z_<0>> . Так, множество Мандельброта — это множество всех c ∈ C <displaystyle cin mathbb > , при которых z n <displaystyle z_> для F ( z ) = z 2 + c <displaystyle F(z)=z^<2>+c> и z 0 <displaystyle z_<0>> не стремится к бесконечности.

Ещё один известный пример такого рода — бассейны Ньютона.

Популярно создание красивых графических образов на основе комплексной динамики путём раскрашивания точек плоскости в зависимости от поведения соответствующих динамических систем. Например, для дополнения множества Мандельброта можно раскрасить точки в зависимости от скорости стремления z n <displaystyle z_> к бесконечности (определяемой, скажем, как наименьший номер n <displaystyle n> , при котором | z n | <displaystyle |z_|> превысит фиксированную большую величину A <displaystyle A> ).

Биоморфы — фракталы, построенные на основе комплексной динамики и напоминающие живые организмы.

Стохастические фракталы [ править | править код ]

Природные объекты часто имеют фрактальную форму. Для их моделирования могут применяться стохастические (случайные) фракталы. Примеры стохастических фракталов:

  • траектория броуновского движения на плоскости и в пространстве;
  • граница траектории броуновского движения на плоскости. В 2001 году Лоулер, Шрамм и Вернер доказали предположение Мандельброта о том, что её размерность равна 4/3.
  • эволюции Шрамма-Лёвнера — конформно-инвариантные фрактальные кривые, возникающие в критических двумерных моделях статистической механики, например, в модели Изинга и перколяции.
  • различные виды рандомизированных фракталов, то есть фракталов, полученных с помощью рекурсивной процедуры, в которую на каждом шаге введён случайный параметр. Плазма — пример использования такого фрактала в компьютерной графике.

Природные объекты, обладающие фрактальными свойствами [ править | править код ]

Природные объекты (квазифракталы) отличаются от идеальных абстрактных фракталов неполнотой и неточностью повторений структуры. Большинство встречающихся в природе фракталоподобных структур (границы облаков, линия берега, деревья, листья растений, кораллы, …) являются квазифракталами, поскольку на некотором малом масштабе фрактальная структура исчезает. Природные структуры не могут быть идеальными фракталами из-за ограничений, накладываемых размерами живой клетки и, в конечном итоге, размерами молекул.

Применение [ править | править код ]

Естественные науки [ править | править код ]

В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и тому подобное. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов). После создания кривой Коха было предложено использовать её при вычислении протяжённости береговой линии.

Радиотехника [ править | править код ]

Фрактальные антенны [ править | править код ]

Использование фрактальной геометрии при проектировании антенных устройств было впервые применено американским инженером Натаном Коэном, который тогда жил в центре Бостона, где была запрещена установка внешних антенн на здания. Натан вырезал из алюминиевой фольги фигуру в форме кривой Коха и наклеил её на лист бумаги, затем присоединил к приёмнику.

Коэн основал собственную компанию и наладил серийный выпуск своих антенн. C тех пор теория фрактальных антенн продолжает интенсивно развиваться. [1] [2] [3] Преимуществом таких антенн является многодиапазонность и сравнительная широкополосность.

Информатика [ править | править код ]

Сжатие изображений [ править | править код ]

Существуют алгоритмы сжатия изображения с помощью фракталов. Они основаны на идее о том, что вместо самого изображения можно хранить сжимающее отображение, для которого это изображение (или некоторое близкое к нему) является неподвижной точкой. Один из вариантов данного алгоритма был использован [4] фирмой Microsoft при издании своей энциклопедии, но большого распространения эти алгоритмы не получили.

Компьютерная графика [ править | править код ]

Фракталы широко применяются в компьютерной графике для построения изображений природных объектов, таких как деревья, кусты, горные ландшафты, поверхности морей и так далее. Существует множество программ, служащих для генерации фрактальных изображений, см. Генератор фракталов (программа).

Децентрализованные сети [ править | править код ]

Система назначения IP-адресов в сети Netsukuku использует принцип фрактального сжатия информации для компактного сохранения информации об узлах сети. Каждый узел сети Netsukuku хранит всего 4 Кб информации о состоянии соседних узлов, при этом любой новый узел подключается к общей сети без необходимости в центральном регулировании раздачи IP-адресов, что, например, характерно для сети Интернет. Таким образом, принцип фрактального сжатия информации гарантирует полностью децентрализованную, а следовательно, максимально устойчивую работу всей сети.

Читайте также:  Фото звезд со спутника

Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке (например, множество Кантора). Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы».

Примеры

Самоподобные множества с необычными свойствами в математике

Начиная с конца XIX века, в математике появляются примеры самоподобных объектов с патологическими с точки зрения классического анализа свойствами. К ним можно отнести следующие:

  • множество Кантора — нигде не плотное несчётное совершенное множество. Модифицировав процедуру, можно также получить нигде не плотное множество положительной длины.
  • треугольник Серпинского и ковёр Серпинского — аналоги множества Кантора на плоскости.
  • губка Менгера — аналог множества Кантора в трёхмерном пространстве;
  • примеры Вейерштрасса и Ван дер Вардена нигде не дифференцируемой непрерывной функции.
  • кривая Коха — несамопересекающаяся непрерывная кривая бесконечной длины, не имеющая касательной ни в одной точке;
  • кривая Пеано — непрерывная кривая, проходящая через все точки квадрата.
  • траектория броуновской частицы также с вероятностью 1 нигде не дифференцируема. Её хаусдорфова размерность равна двум.

Рекурсивная процедура получения фрактальных кривых

Существует простая рекурсивная процедура получения фрактальных кривых на плоскости. Зададим произвольную ломаную с конечным числом звеньев, называемую генератором. Далее, заменим в ней каждый отрезок генератором (точнее, ломаной, подобной генератору). В получившейся ломаной вновь заменим каждый отрезок генератором. Продолжая до бесконечности, в пределе получим фрактальную кривую. На рисунке справа приведены три первых шага этой процедуры для кривой Коха.

Примерами таких кривых служат:

Фракталы как неподвижные точки сжимающих отображений

Свойство самоподобия можно математически строго выразить следующим образом. Пусть — сжимающие отображения плоскости. Рассмотрим следующее отображение на множестве всех компактных (замкнутых и ограниченных) подмножеств плоскости:

Можно показать, что отображение Ψ является сжимающим отображением на множестве компактов с метрикой Хаусдорфа. Следовательно, по теореме Банаха, это отображение имеет единственную неподвижную точку. Эта неподвижная точка и будет нашим фракталом.

Рекурсивная процедура получения фрактальных кривых, описанная выше, является частным случаем данной конструкции. В ней все отображения — отображения подобия, а n — число звеньев генератора.

Для треугольника Серпинского n = 3 и отображения ψ1 , ψ2 , ψ3 — гомотетии с центрами в вершинах правильного треугольника и коэффициентом 1/2. Легко видеть, что треугольник Серпинского переходит в себя при отображении Ψ .

В случае, когда отображения ψi — преобразования подобия с коэффициентами ri > 0 , размерность s фрактала (при некоторых дополнительных технических условиях) может быть вычислена как решение уравнения . Так, для треугольника Серпинского получаем s = ln3 / ln2 .

По той же теореме Банаха, начав с любого компактного множества и применяя к нему итерации отображения Ψ , мы получим последовательность компактов, сходящихся (в смысле метрики Хаусдорфа) к нашему фракталу.

Фракталы в комплексной динамике

Фракталы естественным образом возникают при изучении нелинейных динамических систем. Наиболее изучен случай, когда динамическая система задаётся итерациями многочлена или голоморфной функции комплексной переменной на плоскости. Первые исследования в этой области относятся к началу XX века и связаны с именами Фату и Жюлиа.

Пусть F(z) — многочлен, z — комплексное число и рассмотрим следующую последовательность:

.

Нас интересует поведение этой последовательности при . Эта последовательность может:

  • Стремиться к бесконечности;
  • Стремиться к конечному пределу;
  • Демонстрировать в пределе циклическое поведение, то есть поведение вида
  • Демонстрировать более сложное поведение.

Множества значений z , для которых последовательность демонстрирует один конкретный тип поведения, а также множества точек бифуркации между различными типами, часто обладают фрактальными свойствами.

Так, множество Жюлиа на картинке справа — множество точек бифуркации для многочлена F(z) = z 2 + c , то есть тех значений z , для которых поведение последовательности zn может резко меняться при сколь угодно малых изменениях z .

Другой вариант получения фрактальных множеств — введение параметра в многочлен F(z) и рассмотрение множества тех значений параметра, при которых последовательность zn демонстрирует определённое поведение при фиксированном z . Так, множество Мандельброта — это множество всех , при которых zn для F(z) = z 2 + c и z = 0 не стремится к бесконечности.

Ещё один известный пример такого рода — бассейны Ньютона.

Популярно создание красивых графических образов на основе комплексной динамики путём раскрашивания точек плоскости в зависимости от поведения соответствующих динамических систем. Например, для дополнения множества Мандельброта можно раскрасить точки в зависимости от скорости стремления zn к бесконечности (определяемой, скажем, как наименьший номер n , при котором | zn | превысит фиксированную большую величину A ).

Биоморфы — фракталы, построенные на основе комплексной динамики и напоминающие живые организмы.

Стохастические фракталы

Природные объекты часто имеют фрактальную форму. Для их моделирования могут применяться стохастические (случайные) фракталы. Примеры стохастических фракталов:

  • траектория броуновского движения на плоскости и в пространстве;
  • граница траектории броуновского движения на плоскости. В 2001 году Лоулер, Шрамм и Вернер доказали предположение Мандельборта о том, что её размерность равна 4/3.
  • эволюции Шрамма-Лёвнера — конформно-инвариантные фрактальные кривые, возникающие в критических двумерных моделях статистической механики, например в модели Изинга и перколяции.
  • различные виды рандомизированных фракталов, то есть фракталов, полученных с помощью рекурсивной процедуры, в которую на каждом шаге введён случайный параметр. Плазма — пример использования такого фрактала в компьютерной графике.
Читайте также:  Стеклянная поверхность газовой плиты отзывы

Фрактальная монотипия, или стохатипия — направления в изобразительном искусстве, состоящие в получении изображения случайного фрактала.

В математике есть своя красота, как в живописи и поэзии

Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую известность с выходом в 1977 году его книги «Фрактальная геометрия природы».

Особую популярность фракталы обрели с развитием компьютерных технологий, позволивших эффектно визуализировать эти структуры.

Слово «фрактал» употребляется не только в качестве математического термина. Фракталом может называться предмет, обладающий, по крайней мере, одним из указанных ниже свойств:

Обладает нетривиальной структурой на всех масштабах.

В этом отличие от регулярных фигур (таких как окружность, эллипс, график гладкой функции): если мы рассмотрим небольшой фрагмент регулярной фигуры в очень крупном масштабе, то он будет похож на фрагмент прямой.

Для фрактала увеличение масштаба не ведёт к упрощению структуры, то есть на всех шкалах мы увидим одинаково сложную картину.

Является самоподобным или приближённо самоподобным.

Обладает дробной метрической размерностью или метрической размерностью, превосходящей топологическую.

Многие объекты в природе обладают свойствами фрактала, например: побережья, облака, кроны деревьев, снежинки, кровеносная система, система альвеол человека или животных.

Идеи фрактальной геометрии Бенуа Мандельброта давно вышли за рамки математического приложения. Эти идеи нашли самое широкое применение в социальной и культурной жизни общества.

В статье «Фракталы и искусство во имя науки« Мандельброт говорит об эстетической ценности фракталов.

«Может ли форма, которая определяется простым уравнением или простым правилом построения, – спрашивал автор статьи, – восприниматься людьми, далекими от геометрии, как имеющая эстетическую ценность – а именно, как, по меньшей мере, удивительно декоративная или возможно даже как произведение искусства?»

И сам отвечал: «Если геометрическая форма – фрактал, то ответ – да!»

Б. Мандельброт полагал, что «многие из фракталов можно рассматривать как новую форму минималистского геометрического искусства».

"Фрактальное «новое геометрическое искусство», – отмечал ученый, – демонстрирует поразительное родство с картинами старых мастеров или творениями «изящной» архитектуры.

Одна из очевидных причин заключается в том, что и фракталы, и произведения классических визуальных жанров искусства включают в себя многие масштабы длины и элементы самоподобия».

В качестве примеров классического «фрактального» искусства он приводил фронтиспис «Бог-геометр» французского «Библейского нравоучения в картинках» XIII века, рисунок Леонардо да Винчи «Всемирный потоп», гравюры японского художника конца XVIII – начала XIX веков. Кацусики Хокусая «Сто видов горы Фудзияма» и работы М. Эшера (XX века).

"Всемирный потоп" Леонардо да Винчи

К.Хокусай "Большая волна"

М. Эшер "День и ночь"

Творчество Хокусая, по мнению Мандельброта, может являться «лучшим доказательством того, что фрактальные структуры были известны человечеству с незапамятных времен, но описывались они только посредством искусства».

Знаменитая «Большая волна» даже послужила прообразом графической фрактальной волны, сгенерированной Б. Мандельбротом. С тех пор выявление и подражание фрактальности классической живописи стало увлекательной научной и художественной практикой.

Перед широкой публикой фрактальные картины впервые предстали в 1984 году. Институтом Гете была устроена выставка «Frontiers of Chaos» («Границы хаоса»).

На ней были предложены фрактальные изображения, выполненные математиками и физиками Бременского университета. Многие из тех работ представляли собой цветные фрагменты множества Мандельброта и вошли в изданную десятилетие спустя книгу «Красота фракталов».

За неполные тридцать лет своей публичной истории в качестве арт-объектов фракталы стали предметом целого ряда художественных акций: экспозиций, симпозиумов, фестивалей, вернисажей, ежегодных художественных конкурсов.

Постепенно понятие «фрактальное искусство» вышло далеко за рамки математического, алгоритмического, цифрового искусства

На основе концепции фрактальности возникли такие новые формы живописи и медийного искусства, как фрактальный экспрессионизм или fractalage («фракталаж», аналоговая фрактальная живопись) Дерека Нильсена ,

фрактальные монотипии Леа Лившиц ,фрактальная абстракция Виктора Рибаса , фрактальный реализм Вячеслава Усеинова и Алексея Сундукова , фрактальный супрематизм (В. Рибас, С. Головач, А. Работнов, А. Петтай и др.).

Фрактальные картины самого разного композиционного и семантического типа, созданные разными медийными и программными инструментами с разной степенью мастерства выставляются ныне на многочисленных выставочных площадках – виртуальных и реальных .

Фракталы от Titia Vanbeugen

Фракталы Натана Смита

Фракталы от Keith Mackey

Фракталы от Satu Oli

Фрактальный реализм Алексея Сундукова

Работы Вячеслава Усейнова

Фрактальный абстракционизм Виктора Рибаса

Вступите в группу, и вы сможете просматривать изображения в полном размере

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector