No Image

Что такое квантовый компьютер простым языком

СОДЕРЖАНИЕ
0 просмотров
22 января 2020

Sasha Kononenko

Мир на пороге очередной квантовой революции. Первый квантовый компьютер будет мгновенно решать задачи, на которые самое мощное современное устройство сейчас тратит годы. Какие это задачи? Кому выгодно, а кому угрожает массовое использование квантовых алгоритмов? Что такое суперпозиция кубитов, как люди научились находить оптимальное решение, не перебирая триллионы вариантов? Отвечаем на эти вопросы в рамках рубрики «Просто о сложном».

Евгений Глушков

Студент шестого курса МФТИ, инженер лаборатории искусственных квантовых систем, создатель и редактор ресурса Make It Quantum.

До квантовой в ходу была классическая теория электромагнитного излучения. В 1900 году немецкий ученый Макс Планк, который сам в кванты не верил, считал их вымышленной и чисто теоретической конструкцией, был вынужден признать, что энергия нагретого тела излучается порциями — квантами; таким образом, предположения теории совпали с экспериментальными наблюдениями. А пять лет спустя великий Альберт Эйнштейн прибегнул к этому же подходу при объяснении фотоэффекта: при облучении светом в металлах возникал электрический ток! Вряд ли Планк с Эйнштейном могли предположить, что своими работами закладывают основы новой науки — квантовой механики, которой будет суждено до неузнаваемости преобразить наш мир, и что в XXI веке ученые вплотную приблизятся к созданию квантового компьютера.

Вначале квантовая механика позволила объяснить структуру атома и помогла понять происходящие внутри него процессы. По большому счету сбылась давняя мечта алхимиков о превращении атомов одних элементов в атомы других (да, даже в золото). А знаменитая формула Эйнштейна E=mc2 привела к появлению атомной энергетики и, как следствие, атомной бомбы.

Зависимость растет, постоянно растут вычислительные мощности, но настала пора признать, что, несмотря на свои впечатляющие возможности, компьютеры оказались не в состоянии решить все задачи, которые мы готовы перед ними ставить. Одним из первых об этом начал говорить знаменитый физик Ричард Фейнман: еще в 1981 году на конференции он заявил, что на обычных компьютерах принципиально невозможно точно рассчитать реальную физическую систему. Все дело в ее квантовой природе! Эффекты микромасштаба легко объясняются квантовой механикой и из рук вон плохо — привычной нам классической механикой: она описывает поведение больших объектов. Тогда-то в качестве альтернативы Фейнман предложил использовать для расчетов физических систем квантовые компьютеры.

Что же такое квантовый компьютер и в чем его отличие от компьютеров, к которым мы привыкли? Все дело в том, как мы представляем себе информацию.

Если в обычных компьютерах за эту функцию отвечают биты — нули и единички, — то в квантовых компьютерах им на смену приходят квантовые биты (сокращенно — кубиты). Сам кубит — вещь довольно простая. У него по-прежнему два основных значения (или состояния, как любят говорить в квантовой механике), которые он может принимать: 0 и 1. Однако благодаря свойству квантовых объектов под названием «суперпозиция» кубит может принимать все значения, которые являются комбинацией основных. При этом его квантовая природа позволяет ему находиться во всех этих состояниях одновременно.

В этом и заключается параллельность квантовых вычислений с кубитами. Все случается сразу — уже не нужно перебирать все возможные варианты состояний системы, а это именно то, чем занимается обычный компьютер. Поиск по большим базам данных, составление оптимального маршрута, разработка новых лекарств — лишь несколько примеров задач, решение которых способны ускорить во множество раз квантовые алгоритмы. Это те задачи, где для поиска правильного ответа нужно перебрать огромное количество вариантов.

Кроме того, для описания точного состояния системы теперь не нужны огромные вычислительные мощности и объемы оперативной памяти, ведь для расчета системы из 100 частиц достаточно 100 кубитов, а не триллионов триллионов бит. Более того, с ростом числа частиц (как в реальных сложных системах) эта разница становится еще существеннее.

Одна из переборных задач выделялась своей кажущейся бесполезностью — разложение больших чисел на простые множители (то есть делящиеся нацело только на самих себя и единицу). Это называется «факторизация». Дело в том, что обычные компьютеры умеют довольно быстро перемножать числа, пусть даже и весьма большие. Однако с обратной задачей разложения большого числа, получившегося в результате перемножения двух простых чисел, на исходные множители обычные компьютеры справляются очень плохо. Например, чтобы разложить на два сомножителя число из 256 цифр, даже самому мощному компьютеру понадобится не один десяток лет. А вот квантовый алгоритм, который может решить эту задачу за несколько минут, придумал в 1997 году английский математик Питер Шор.

Первый российский кубит под электронным микроскопом

Квантовый процессор на девяти кубитах от Google

С появлением алгоритма Шора перед научным сообществом встала серьезная проблема. Еще в конце 1970-х годов, основываясь на сложности задачи факторизации, ученые-криптографы создали алгоритм шифрования данных, получивший повсеместное распространение. В частности, с помощью этого алгоритма стали защищать данные в интернете — пароли, личную переписку, банковские и финансовые транзакции. И после многолетнего успешного использования вдруг оказалось, что зашифрованная таким способом информация становится легкой мишенью для алгоритма Шора, запущенного на квантовом компьютере. Дешифровка с его помощью становится минутным делом. Радовало одно: квантовый компьютер, на котором можно было бы запустить смертоносный алгоритм, еще не был создан.

Читайте также:  Телефон microsoft lumia 540 dual sim

Тем временем по всему миру десятки научных групп и лабораторий стали заниматься экспериментальными исследованиями кубитов и возможностями создания из них квантового компьютера. Ведь одно дело — теоретически придумать кубит, и совсем другое — воплотить его в реальность. Для этого было необходимо найти подходящую физическую систему с двумя квантовыми уровнями, которые можно использовать в качестве базовых состояний кубита — нуля и единицы. Сам Фейнман в своей пионерской статье предлагал использовать для этих целей закрученные в разные стороны фотоны, но первыми экспериментально созданными кубитами стали в 1995 году захваченные в специальные ловушки ионы. За ионами последовали многие другие физические реализации: ядра атомов, электроны, фотоны, дефекты в кристаллах, сверхпроводящие цепи — все они отвечали поставленным требованиям.

Такое разнообразие имело свои достоинства. Подгоняемые острой конкуренцией, различные научные группы создавали все более совершенные кубиты и строили из них все более сложные схемы. Основных соревновательных параметров у кубитов было два: время их жизни и количество кубитов, которые можно было заставить работать сообща.

Сотрудники лаборатории искусственных квантовых систем

Время жизни кубитов задавало то, как долго в них хранилось хрупкое квантовое состояние. Это, в свою очередь, определяло, сколько вычислительных операций можно было выполнить с кубитом, пока он не «умер».

Для эффективной работы квантовых алгоритмов нужен был не один кубит, а хотя бы сотня, причем работающая вместе. Проблема заключалась в том, что кубиты не очень любили соседствовать друг с другом и выражали протест драматическим уменьшением своего времени жизни. Чтобы обойти эту неуживчивость кубитов, ученым приходилось идти на всяческие ухищрения. И все же на сегодняшний день ученым удалось заставить работать вместе максимум один-два десятка кубитов.

Так что, на радость криптографам, квантовый компьютер — все еще дело будущего. Хотя уже совсем не такого далекого, как могло когда-то казаться, ведь к его созданию активно подключаются как крупнейшие корпорации вроде Intel, IBM и Google, так и отдельные государства, для которых создание квантового компьютера — вопрос стратегической важности.

Очередной привет всем читателям моего блога! Вчера в новостях проскочила в очередной раз пара сюжетов о «квантовом» компьютере. Мы из школьного курса физики знаем, что квант — это некая одинаковая порция энергии, еще есть словосочетание «квантовый скачок», то есть мнгновенный переход с некоего уровня энергии на еще более высокий уровень.. Давайте вместе разбираться, что такое квантовый компьютер, и что нас всех ожидает, когда появится эта чудо машина

Я впервые начал интересоваться этой темой при просмотре фильмов про Эдварда Сноудена. Как известно, этот американский гражданин собрал несколько терабайт конфиденциальной информации (компромата) о деятельности спецслужб США, хорошенько зашифровал ее и выложил в Интернет. «Если, сказал он, со мной что-нибудь случиться, информация будет расшифрована и станет таким образом доступна для всех.»

Расчет был на то, что информация эта «горячая», будет актуальна еще лет десять. А расшифровать ее можно современными вычислительными мощностями то же не меньше, чем через десять или больше лет. Квантовый же компьютер по ожиданиям разработчиков справится с этой задачей минут за двадцать пять.. Криптографы в панике. Вот такой «квантовый» скачок нас скоро ожидает, друзья.

Принципы работы квантового компьютера для чайников

Раз мы уж заговорили о квантовой физике, давайте немножко поговорим о ней. Я не буду углубляться в дебри друзья. Я ведь «чайник», а не квантовый физик. Лет сто назад Энштейн опубликовал свою теорию относительности. Все умные люди того времени удивлялись, как много в ней парадоксов и невероятных вещей. Так вот, все пародоксы Энштейна, описывающие законы нашего мира — просто невинный лепет пятилетнего ребенка по сравнению с тем, что твориться на уровне атомов и молекул.

Сами «квантовые физики», описывающие явления происходящие на уровнях электронов и молекул говорят примерно так: » Это невероятно. Этого не может быть. Но это так. Не спрашивайте нас, как это все работает. Мы не знаем, как и почему. Мы просто наблюдаем. Но это работает. Это доказано экспериментально. Вот формулы, зависимости и записи экспериментов.»

Так в чем же разница между обычным и квантовым компьютером? Ведь обычный компьютер тоже работает на электричестве, а электричество — это куча очень маленьких частиц — электронов?

Наши с Вами компьютеры работают по принципу или «Да» или «Нет». Если есть ток в проводе, это «Да»или «Единица». Если тока в проводе «Нет», то это «Ноль». Вариант значения «1 «и «0» есть единица хранения информации под названием «Бит».. Один байт это 8 бит и так далее и так далее…

Теперь представьте ваш процессор, на котором 800 миллионов таких «проводов» на каждом из которых за секунду появляется и исчезает такой вот «ноль» или «единица». И вы мысленно можете вообразить, как он обрабатывает информацию. Вы сейчас читаете текст, но на самом деле это совокупность нулей и единиц.

Путем перебора и вычислений Ваш компьютер обрабатывает Ваши запросы в Яндексе, ищет нужные до тех пор, пока не решит задачу и путем исключения не докопается до нужной Вам . Выводит на монитор шрифты, картинки в читаемом для нас виде… Пока надеюсь ничего сложного? А картинка — это тоже нули и единицы.

Представьте теперь себе друзья на секунду модель нашей солнечной системы. В центре Солнце, вокруг него летит Земля. Мы знаем, что она в определенный момент всегда находится в определенной точке пространства и через секунду она уже улетит на тридцать километров дальше.

Так вот, модель атома то же планетарная, там атом тоже вращается вокруг ядра. Но ДОКАЗАНО, друзья, умными парнями в очках, что атом в отличии от Земли одновременно и всегда находится во всех местах..Везде и нигде одновременно. И назвали они это замечательное явление «суперпозицией». Для того, чтобы познакомится поближе и другими явлениями квантовой физики, предлагаю глянуть научно-популярный фильм, где простым языком рассказывается о сложном и в довольно оригинальной форме.

Читайте также:  Чем магнитное поле отличается от электрического поля

Продолжим.” И вот на смену «нашему» биту приходит квантовый бит. Его еще называют «Кубит». У него то же всего два исходных состояния «ноль» и «единица». Но, так как природа его «квантовая», то он может ОДНОВРЕМЕННО принимать все возможные промежуточные значения. И одновременно находиться в них. Теперь значения не надо последовательно вычислять, перебирать. долго искать в базе. Они известны уже заранее, сразу. Вычисления идут параллельно.

Первые «квантовые» алгоритмы для математических вычислений были придуманы еще математиком из Англии Питером Шором в 1997 году. Когда он показал их миру, все шифровальщики здорово напряглись, так как существующие шифры «раскалываются» этим алгоритмом за несколько минут.. Вот только компьютеров, работающих по квантовому алгоритму тогда еще не было.

С тех пор с одной стороны идет работа по созданию физической системы, в которой бы работал квантовый бит. То есть «железа». А с другой стороны уже придумывают защиту от квантового взлома и расшифровки данных.

А что сейчас ? А вот так выглядит квантовый процессор под микроскопом на 9 кубит от фирмы Google.

Неужели они нас обогнали? 9 кубит или по «старому» 15 бит, это не так много пока еще. Плюс дороговизна, масса технических проблем и короткое время «жизни» квантов. Но вспомните что сначала были 8 битные, потом появились 16 битные процессоры… Так будет и с этими …

Квантовый компьютер в России — миф или реальность?

А мы что же? А мы то же не за печкой родились. Вот нарыл фото первого российского Кубита под микроскопом. Тут правда он один.

Тоже выглядит как некая «петля», в которой происходит нечто для нас пока не познанное. Отрадно думать, если наши при поддержке государства разрабатывают свое. Так что отечественные разработки это уже не миф. Вот оно, наше будущее. Каким оно будет, посмотрим.

Последние новости о квантовом компьютере России мощностью 51 кубит

Вот новости этого лета. Наши дядечки (честь им и хвала!) разработали самый мощный в мире (!) квантовый (!) компьютер 51 кубит(!)т. Самое интересное то, что до этого Google анонсировало свой компьютер на 49 кубит. И по их оценкам они должны были его закончить через месяц или около того. А наши решили показать уже готовый, свой квантовый процессор на 51 кубит.. Браво! Вот какая идет гонка. Нам хотя бы не отставать. Потому что ожидается большой прорыв в науке, когда эти системы заработают. Вот фото человека, который представлял нашу разработку на «квантовом» международном форуме.

Фамилия этого ученого — Михаил Лукин. Сегодня его имя в центре внимания. Невозможно создать такой проект в одиночку, мы это понимаем. Он и его команда создали на сегодня самый мощный в мире(!) квантовый компьютер или процессор. Вот что говорят по этому поводу компетентные лица:

«Квантовый компьютер функционирующий, он гораздо страшнее атомной бомбы, — отмечает сооснователь Российского квантового центра Сергей Белоусов. — Он (Михаил Лукин) сделал систему, в которой больше всего кубитов. На всякий случай. На данный момент, я думаю, это более чем в два раза больше кубитов, чем у кого-либо другого. И он специально сделал 51 кубит, а не 49. Потому что Google всё время говорили, что сделают 49».

Впрочем, сам Лукин и руководитель квантовой лаборатории Google Джон Мартинес конкурентами или соперниками себя не считают. Учёные убеждены, что их главным соперником является природа, а основной целью — развитие технологий и их внедрение для продвижения человечества на новый виток развития.

«Неправильно думать об этом, как о гонке, — справедливо считает Джон Мартинес. — Настоящая гонка у нас с природой. Потому что это действительно сложно — создать квантовый компьютер. И это просто захватывающе, что кому-то удалось создать систему с таким большим количеством кубитов. Пока 22 кубита — это максимум, что мы могли сделать. Хоть мы и использовали всё своё волшебство и профессионализм».

Да, все это очень интересно. Если вспомнить аналогии, когда изобрели транзистор, никто не мог знать, что на этой технологии через 70 лет будут работать компьютеры. В одном только современном процессоре количество их достигает 700 миллионов..Первый компьютер весил много тонн и занимал большие площади. Но персональные компьютеры все равно появились — много позже…

Я думаю, что пока нам в ближайшее время не стоит ждать появления в наших магазинах устройств такого класса. Многие их ждут. Особенно добытчики криптовалют много спорят по этому поводу. С надеждой взирают на него ученые, и с пристальным вниманием — военные. Потенциал этой разработки как мы понимаем, до конца не ясен.

Ясно только, что когда это все заработает, оно потащит вперед за собой всю наукоемкую промышленность.Постепенно появятся новые технологии, новые отрасли, новый софт.. Время покажет.

Только бы не подвел человеков свой собственный квантовый компьютер, данный нам при рождении — это наша голова. Так что, пока не спешите выкидывать на помойку свои гаджеты. Они долго Вам еще послужат. Пишите, если статья была интересной. Заходите чаще. До свидания!

Многие из нас слышали о квантовом компьютер, но что он собой представляет, а главное какие задачи с помощью него можно решать, известно далеко не всем. Квантовый компьютер уже несколько лет активно изучают лучшие умы мира; он даже появлялся на обложке журнала Time, с подписью: «Он обещает решить некоторые самые сложные проблемы человечества, при этом никто не знает, как он в действительности работает».

Сейчас компьютеры исследуют многие ученые и крупные компании, такие как Google, IBM, Microsoft и другие. По их словам, если такой компьютер все же удастся создать, то это будет настоящий прорыв, сравнимый с открытием классических компьютеров.

Читайте также:  Снпч или лазерный принтер что лучше

Квантовый компьютер и непреодолимые трудности

Квантовый компьютер — это вычислительное устройство, работающее по принципам квантовой механики, которую по праву можно назвать самым сложным разделом физики. Квантовая механика зародилась в начале 20-ого века, и изучает поведение квантовых систем и ее элементов. Квантовая частица может находиться в нескольких местах и состояниях одновременно, поэтому по определению квантовая механика полностью противоречит общей теории относительности. Но давайте не будем углубляться в науку, а вернемся к нашей главной теме — квантовому компьютеру.

В начале века выяснилось, что использование электрических схем для создания вычислительных устройств имеет свои границы, и все они практически были достигнуты. Сейчас же перед человечеством встают все новые и новые задачи, для решения которых классических компьютеров будет недостаточно. Самый простой пример такой задачи — это разложение больших чисел на множители. Для этой цели было построено большинство криптографических систем. Это покажется банальным но, если бы кому-то удалось быстро разложить большое число на простые множители, то для него стали доступны транзакции во всех банках мира.

Другая не менее важная задача, с которой современные компьютеры никогда не смогут справиться — это моделирование квантовых систем и молекул ДНК. Исходя из этого, можно сделать вывод, что создание квантовых компьютеров — весьма перспективное решение, которое позволит решить эти и многие другие проблемы.

Принцип работы квантового компьютера

Классический компьютер работает на основе транзисторов и кремниевых чипов, которые используют для обработки информации бинарный код, состоящий из нулей и единиц. Бит, как минимальная единица информации имеет два базовых состояния: 1 и 0. Изменения этих состояний можно легко контролировать: объекты могут либо находиться в конкретном месте, либо — не находится. Именно поэтому многие физические объекты внешнего мира можно перенести в виртуальный с помощью сложных комбинаций битов. Работа же квантового компьютера будет основываться на принципе суперпозиции, а вместо битов будут использоваться кубиты (квантовые биты), которые одновременно могут находиться во всевозможных состояниях (в 1 и 0 одновременно). По словам ученных, за счет этого квантовые компьютеры для определенных классов задач будут в миллионы раз мощнее нынешних. Сейчас уже описаны десятки всевозможных алгоритмов работы квантового компьютера, даже разрабатываются особые языки программирования.

По большому счету, мир использует квантовые технологии уже давно. Лазеры, томографы и сверхчувствительные микроскопы базируются на массовых эффектах, создаваемых большими группами квантовых частиц или волн, которые подчиняются законам квантовой механики. Основная же задача состоит в использовании этих эффектов для отдельных частиц, а не групп в целом.

Для чего нужен квантовый компьютер?

Пока ученные трудятся над созданием квантового компьютера, они одновременно ищут ему применение. Главным остается тот факт, что такой компьютер сможет моментально совершать вычисления и работать с большим объемом данных.

С помощью квантовых компьютеров можно оптимизировать множество процессов: от медицины и до машиностроения. Например, у людей появится возможность диагностировать рак на более ранних стадиях, или делать более сложные автопилоты. Как упоминалось ранее, с помощью квантового компьютера будет возможно быстро раскладывать большие числа на множители и моделировать молекулы ДНК. Также существует теория того, что квантовый компьютер будет справляться с задачами, которые обычный компьютер решить не в состоянии или потратит на это тысячи лет вычислений. Это, допустим, создание искусственного интеллекта или поиск разумных существ во Вселенной, кроме человека. В любом случае все ученные сходятся на том, что это создание такого компьютера будет настоящим прорывом, возможно, главным в истории человечества.

Исправление ошибок — основная проблема квантовых компьютеров

Ошибки в квантовых компьютерах можно разделить на два главных уровня. Ошибки первого уровня присущи всем компьютерам, в том числе и классическим. К таким ошибкам относится непроизвольная смена кубитов из-за внешнего шума (например: космических лучей или радиации). С этой проблемой недавно удалось справиться специалистам из компании Google. Для решения этой проблемы команда ученых во главе с Джулианом Келли создала особую квантовую схему из девяти кубитов, которые ищут ошибки в системе. Остальные кубиты отвечают за сохранность информации, таким образом, сохраняя ее дольше, нежели с использованием единичного кубита. Однако основная проблема никуда не делась, остается второй уровень ошибок.

Кубиты изначально по своей природе нестабильны, они мгновенно забывают информацию, которую вы хотите сохранить на квантовый компьютер. Под воздействием на кубит окружающей среды нарушается связь внутри квантовой системы (процесс декогеренции). Чтобы избавиться от этого, квантовый процессор нужно максимально изолировать от воздействия внешних факторов. Как это сделать? — пока остается загадкой. По словам экспертов, 99% мощности такого компьютера уйдет на исправления ошибок, и лишь 1% хватит для решения любых задач. Конечно, от ошибок не удастся избавиться полностью, но если минимизировать их до определенного уровня, квантовый компьютер сможет работать.

Насколько человечество близко к созданию квантовых компьютеров?

Дать ответ на этот вопрос сейчас очень сложно — практически невозможно. Новости о прорывах в этой сфере появляются регулярно, но нельзя сказать, что они глобальные. В создании квантовых компьютеров заинтересованы все: начиная военными и заканчивая технологическими компаниями. Компания D-Wawe, с которой активно сотрудничает Google и NASA, заявляет, что создала процессор с 84 кубитами, но критики, проанализировавшие его сообщили, что он работает как классический. IBM несколько лет назад объявили, что создали чип с тремя кубитами, а Microsoft основательно занимается разработкой квантовых компьютеров еще с 2007 года.

По прогнозу исследователей из компании Cisco Systems, полноценный рабочий квантовый компьютер появится к середине следующего десятилетия, и будут по мощности сравним с человеческим мозгом. В любом случае проблема разработки новых совершенных компьютеров будет актуальна до тех пор, пока человечество не научится исправлять квантовые ошибки второго уровня. Если это когда-то случится, то до создания рабочего квантового компьютера останется лишь несколько лет.

>

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector