Цвет абсолютно черного тела

Содержание
  1. Законы излучения абсолютно чёрного тела
  2. Классический подход
  3. Первый закон излучения Вина
  4. Второй закон излучения Вина
  5. Закон Рэлея — Джинса
  6. Закон Планка
  7. Закон Стефана — Больцмана
  8. Закон смещения Вина
  9. Чернотельное излучение
  10. Цветность чернотельного излучения
  11. См. также
  12. Ссылки
  13. Примечания
  14. Смотреть что такое "Абсолютно чёрное тело" в других словарях:
  15. Содержание
  16. Практическая модель [ править | править код ]
  17. Законы излучения абсолютно чёрного тела [ править | править код ]
  18. Классический подход [ править | править код ]
  19. Первый закон излучения Вина [ править | править код ]
  20. Второй закон излучения Вина [ править | править код ]
  21. Закон Рэлея — Джинса [ править | править код ]
  22. Закон Планка [ править | править код ]
  23. Закон Стефана — Больцмана [ править | править код ]
  24. Закон смещения Вина [ править | править код ]
  25. Чернотельное излучение [ править | править код ]
  26. Цветность чернотельного излучения [ править | править код ]
  27. Термодинамика равновесного теплового излучения [ править | править код ]

Абсолютно черное тело (АЧТ) – это понятие, относящееся к теории теплового излучения. Оно обозначает тело, имеющее свойство полностью поглощать любое попадающее на его поверхность электромагнитное излучение вне зависимости от длины волны и температуры собственной поверхности. Поглощающий коэффициент такого тела равен 1. Коэффициент отображает отношение поглощаемой энергии к энергии падающего потока. Для него характерно наличие собственного электромагнитного излучения любой частоты. Спектры его излучения способны определятся только в температурном выражении.

Абсолютно черное тело в природе

Стоит отметить, что понятие абсолютного черного тела является абстрактным, поскольку не существует ни одного предмета или явления, способного поглощать электромагнитное излучение, имея при этом коэффициент равный 1. Находящиеся в космосе черные дыры не принимаются во внимание, поскольку невозможно проконтролировать их температуру, чтобы высчитать уровень излучения и фактический коэффициент, если он вообще имеется.

Коэффициент поглощения на уровне 1 это идеал, которого не существует. Тем не менее, есть вещества, которые очень близки к данному результату. В первую очередь к ним относится сажа и платиновая чернь. Поверхность сажи способна поглощать до 99% падающего излучения. Такой показатель достигается только при работе с видимыми волнами. При попадании инфракрасных волн излучение осуществляется значительно лучше, поэтому сажа теряет свою приближенность к абсолютному черному телу.

Из космических тел солнечной системы практически свойствами АЧТ обладает Солнце. Дело в том, что его излучение происходит с длиной волны 450 нм, при фактической температуре наружных слоев в 6000 К. Это фактически имеет близкий результат к коэффициенту 1.

Абсолютно черное тело — это одна из главных причина появления такого понятия, а в последующем и дисциплины как квантовая механика. Также абсолютно черное тело актуально в термодинамике, астрономии и теории теплового излучения.

Макет АЧТ

Чтобы визуально продемонстрировать принцип работы абсолютного черного тела применяется несложная в изготовлении модель. Ее можно сделать даже самостоятельно используя недорогое подручное оборудование. Для этого необходимо взять непрозрачный ящик. В качестве него может использоваться картонная коробка от обуви или различных продуктов питания. Одну из ее боковых стенок необходимо покрасить в черный цвет или наклеить плотную черную бумагу. Чем она темнее, тем лучше. В центре оклеенной стенки делается сквозное отверстие. Теперь, если смотреть на данную коробку, когда она находится в закрытом состоянии, можно увидеть, что проделанное отверстие намного чернее, чем черная бумага оклеенная вокруг него.

Поскольку отверстие в коробке небольшое, то тонкий пучок света, попадающий в ее полость, многократно отображается от стенок. Как следствие волна медленно затухает. Если она и сможет отобразиться таким образом, чтобы выйти обратно в отверстие, через которое попала, то претерпит настолько сильное изменения, что фактический не будет заметной.

В лабораторных условиях применяются более сложные макеты, сделанные из термостойкого материала. При таком макете возможно проводить его нагрев, что приведет к появлению собственного видимого излучения. Это расширяет диапазон экспериментов.

Самый черный материал в мире

По принципу абсолютного черного тела был разработан материал под названием Vantablack 2, который не поддается измерению спектрометром. Он был получен в 2014 году и является самым темным предметом известным человеку. Он состоит из миниатюрных нанотрубок. Попадающий в их отверстия свет обратно практически не возвращается. Коэффициент их отражения насколько низок, что составляет всего 0,036%.

При исследовании данного материала можно увидеть множество интересных свойств. К примеру, если навести на такое абсолютно черное тело лазерную указку, то она вообще не отображается. Лазерная точка не видна на поверхности, в результате чего создается впечатление, что указка не включена. То же самое касается и любого другого светового оборудования.

Если из этого материала сделать объемную вещь, то при взгляде прямо она всегда выглядит как плоское пятно, поскольку контуры выступов совершенно не просматриваются. Существует несколько предметов искусства, сделанные современными художниками с применением материала Vantablack 2.

Для изготовления данного материала применяются нанотрубки, толщина которых составляет всего 20 нанометров. Это действительно мало, даже в сравнении с человеческим волосом. Фактически такая трубка в 3500 раз тоньше волоса. Один квадратный сантиметр поверхности такого материала состоит из миллиарда нанотрубок.

Принцип действия такого черного тела можно сравнить с лесными деревьями. Посещая лес или парк где имеются деревья высотой в 20 м можно заметить, что солнечный свет практически не достигает поверхности земли. Чтобы провести аналогию с Vantablack 2 нужно, чтобы высота таких деревьев составляла 3000 м, что и позволит достигнуть того эффекта, который создается между стенками нанотрубок.

Перспективные направления использования АЧТ

Любое вещество, работающее как абсолютно черное тело, приобретает весьма ценные свойства. Они поглощают спектр видимого света, ультрафиолета, инфракрасного излучения и так далее. Это весьма перспективное направление развития военной техники, которая при обладании такими свойствами могла бы стать невидимой для технического обнаружения. Что касается научного применения, то абсолютно черные тела могут использоваться для калибровки оптического оборудования. Существуют установки, которые работает по принципу рассмотренному на примере коробки с отверстием. С их помощью осуществляется проверка и настройка работы бесконтактного термометра. Подобные приборы используются в качестве эталона, применяемого при измерении высоких температур с помощью пирометров.

Закон Стефана — Больцмана

Поскольку для абсолютно черного тела характерна невозможность фиксации излучения с применением технического оборудования, то для этого применяется закон Стефана-Больцмана. Это интегральный закон позволяющий определять зависимость плотности мощности излучения от температуры АЧТ. Словесная форма закона звучит следующим образом. Полная объемная плотность равновесного излучения и испускательная способность пропорциональны четвертой степени температуры абсолютно черного тела.

Свое название закон получил от имен двух ученых. Изначально он был открыт Стефаном в 1879 году. Однако его теоретическая составляющая не была закончена. Именно эту часть закона и вывел Больцман.

Приборы АЧТ

В продаже предлагается устройство абсолютно черное тело, которое является эталонным излучателем для проведения поверки пирометров. Они позволяют контролировать точность в диапазоне от +100 до +1100 градусов. Также существуют и более совершенные устройства с увеличенным диапазоном излучение, но их стоимость на порядок выше. Такие установки состоят из трубчатой печи, блока управления и эталонного преобразователя.

Читайте также:  Смешной девиз по жизни

Абсолютно чёрных тел в природе не существует (кроме чёрных дыр), поэтому в физике для экспериментов используется модель. Она представляет собой замкнутую полость с небольшим отверстием. Свет, попадающий внутрь сквозь это отверстие, после многократных отражений будет полностью поглощён, и отверстие снаружи будет выглядеть совершенно чёрным. Но при нагревании этой полости у неё появится собственное видимое излучение. Поскольку излучение, испущенное внутренними стенками полости, прежде, чем выйдет (ведь отверстие очень мало), в подавляющей доле случаев претерпит огромное количество новых поглощений и излучений, то можно с уверенностью сказать, что излучение внутри полости находится в термодинамическом равновесии со стенками. (На самом деле, отверстие для этой модели вообще не важно, оно нужно только чтобы подчеркнуть принципиальную наблюдаемость излучения, находящегося внутри; отверстие можно, например, совсем закрыть, и быстро приоткрыть только тогда, когда равновесие уже установилось и проводится измерение).

Законы излучения абсолютно чёрного тела

Классический подход

Изначально к решению проблемы были применены чисто классические методы, которые дали ряд важных и верных результатов, однако полностью решить проблему не позволили, приведя в конечном итоге не только к резкому расхождению с экспериментом, но и к внутреннему противоречию — так называемой ультрафиолетовой катастрофе.

Изучение законов излучения абсолютно чёрного тела явилось одной из предпосылок появления квантовой механики.

Первый закон излучения Вина

В 1893 году Вильгельм Вин, воспользовавшись, помимо классической термодинамики, электромагнитной теорией света, вывел следующую формулу:

где uν — плотность энергии излучения,

ν — частота излучения, T — температура излучающего тела, f — функция, зависящая только от частоты и температуры. Вид этой функции невозможно установить, исходя только из термодинамических соображений.

Первая формула Вина справедлива для всех частот. Любая более конкретная формула (например, закон Планка) должна удовлетворять первой формуле Вина.

Из первой формулы Вина можно вывести закон смещения Вина (закон максимума) и закон Стефана — Больцмана, но нельзя найти значения постоянных, входящих в эти законы.

Исторически именно первый закон Вина назывался законом смещения, но в настоящее время термином «закон смещения Вина» называют закон максимума.

Второй закон излучения Вина

В 1896 году Вин на основе дополнительных предположений вывел второй закон:

где C1, C2 — константы. Опыт показывает, что вторая формула Вина справедлива лишь в пределе высоких частот (малых длин волн). Она является частным конкретным случаем первого закона Вина.

Позже Макс Планк показал, что второй закон Вина следует из закона Планка для больших энергий квантов, а также нашёл постоянные C1 и C2 . С учётом этого, второй закон Вина можно записать в виде:

Закон Рэлея — Джинса

Попытка описать излучение абсолютно чёрного тела исходя из классических принципов термодинамики и электродинамики приводит к закону Рэлея — Джинса:

Эта формула предполагает квадратичное возрастание спектральной плотности излучения в зависимости от его частоты. На практике такой закон означал бы невозможность термодинамического равновесия между веществом и излучением, поскольку согласно ему вся тепловая энергия должна была бы перейти в энергию излучения коротковолновой области спектра. Такое гипотетическое явление было названо ультрафиолетовой катастрофой.

Тем не менее закон излучения Рэлея — Джинса справедлив для длинноволновой области спектра и адекватно описывает характер излучения. Объяснить факт такого соответствия можно лишь при использовании квантово-механического подхода, согласно которому излучение происходит дискретно. Исходя из квантовых законов можно получить формулу Планка, которая будет совпадать с формулой Рэлея — Джинса при .

Этот факт является прекрасной иллюстрацией действия принципа соответствия, согласно которому новая физическая теория должна объяснять всё то, что была в состоянии объяснить старая.

Закон Планка

Интенсивность излучения абсолютно чёрного тела в зависимости от температуры и частоты определяется законом Планка:

где — мощность излучения на единицу площади излучающей поверхности в единичном интервале частот в перпендикулярном направлении на единицу телесного угла (размерность в СИ: Дж·с −1 ·м −2 ·Гц −1 ·ср −1 ).

где — мощность излучения на единицу площади излучающей поверхности в единичном интервале длин волн в перпендикулярном направлении на единицу телесного угла (размерность в СИ: Дж·с −1 ·м −2 ·м −1 ·ср −1 ).

Полная (т.е. испускаемая во всех направлениях) спектральная мощность излучения с единицы поверхности абсолютно чёрного тела описывается этими же формулами с точностью до коэффициента π : ε(ν, T) = πI(ν, T) , ε(λ, T) = πu(λ, T) [1] .

Закон Стефана — Больцмана

Общая энергия теплового излучения определяется законом Стефана — Больцмана, который гласит:

Мощность излучения абсолютно чёрного тела (интегральная мощность по всему спектру), приходящаяся на единицу площади поверхности, прямо пропорциональна четвёртой степени температуры тела:

где j — мощность на единицу площади излучающей поверхности, а

Вт/(м²·К 4 ) — постоянная Стефана — Больцмана.

Таким образом, абсолютно чёрное тело при T = 100 K излучает 5,67 ватт с квадратного метра своей поверхности. При температуре 1000 К мощность излучения увеличивается до 56,7 киловатт с квадратного метра.

Для нечёрных тел можно приближённо записать:

где — степень черноты (для всех веществ , для абсолютно чёрного тела ).

Константу Стефана — Больцмана можно теоретически вычислить только из квантовых соображений, воспользовавшись формулой Планка. В то же время общий вид формулы может быть получен из классических соображений (что не снимает проблемы ультрафиолетовой катастрофы).

Закон смещения Вина

Длина волны, при которой энергия излучения абсолютно чёрного тела максимальна, определяется законом смещения Вина:

где T — температура в кельвинах, а — длина волны с максимальной интенсивностью в метрах.

Так, если считать в первом приближении, что кожа человека близка по свойствам к абсолютно чёрному телу, то максимум спектра излучения при температуре 36 °C (309 К) лежит на длине волны 9400 нм (в инфракрасной области спектра).

Видимый цвет абсолютно чёрных тел с разной температурой представлен на диаграмме.

Чернотельное излучение

Электромагнитное излучение, находящееся в термодинамическом равновесии с абсолютно чёрным телом при данной температуре (например, излучение внутри полости в абсолютно чёрном теле), называется чернотельным (или тепловым равновесным) излучением. Равновесное тепловое излучение однородно, изотропно и неполяризовано, перенос энергии в нём отсутствует, все его характеристики зависят только от температуры абсолютно чёрного тела-излучателя (и, поскольку чернотельное излучение находится в тепловом равновесии с данным телом, эта температура может быть приписана излучению). Объёмная плотность энергии чернотельного излучения равна его давление равно Очень близко по своим свойствам к чернотельному так называемое реликтовое излучение, или космический микроволновой фон — заполняющее Вселенную излучение с температурой около 3 К.

Цветность чернотельного излучения

Температурный интервал в Кельвинах Цвет
до 1000 Красный
1000—1500 Оранжевый
1500—2000 Жёлтый
2000—4000 Бледно-жёлтый
4000—5500 Желтовато-белый
5500—7000 Чисто белый
7000—9000 Голубовато-белый
9000—15000 Бело-голубой
15000—∞ Голубой

Цвета даны в сравнении с рассеянным дневным светом (D65). Реально воспринимаемый цвет может быть искажён адаптацией глаза к условиям освещения.

Читайте также:  Учимся печатать 10 пальцами

См. также

Ссылки

  • Спектр чёрного тела (flash-приложение)
  • Пример характеристик прибора для использования на предприятии

Примечания

  1. Д. К. Надежин Планка закон излучения (в кн.: Физика космоса. М.: 1986).

Wikimedia Foundation . 2010 .

Смотреть что такое "Абсолютно чёрное тело" в других словарях:

АБСОЛЮТНО ЧЁРНОЕ ТЕЛО — термин, к рым в теории теплового излучения наз. тело, полностью поглощающее весь падающий на него поток излучения. Коэфф. поглощения А. ч. т. равен единице и не зависит от длины волны излучения. Наиболее близким приближением к А. ч. т. явл.… … Физическая энциклопедия

Абсолютно чёрное тело — Абсолютно черное тело (модель): излучение, попадающее на отверстие в полости, полностью ею поглощается. АБСОЛЮТНО ЧЁРНОЕ ТЕЛО, тело, которое полностью поглощает все падающее на него электромагнитное излучение; спектр излучения абсолютно черного… … Иллюстрированный энциклопедический словарь

Абсолютно чёрное тело — тело, которое при любой температуре полностью поглощает весь падающий на него поток излучения, независимо от длины волны. Коэффициент поглощения А. ч. т. (отношение поглощаемой энергии к энергии падающего потока) равен 1. В природе А. ч.… … Большая советская энциклопедия

АБСОЛЮТНО ЧЁРНОЕ ТЕЛО — АБСОЛЮТНО ЧЁРНОЕ ТЕЛО, тело, которое полностью поглощает все падающее на него электромагнитное излучение; спектр излучения абсолютно черного тела определяется только его температурой. Абсолютно черное тело идеализированная модель, она… … Современная энциклопедия

Абсолютно чёрное тело — – тело, которое при любой температуре полностью поглощает весь падающий на него поток излучения, независимо от длины волны. Коэффициент поглощения А. ч. т. (отношение поглощаемой энергии к энергии падающего потока) равен 1. В природе А. ч.… … Энциклопедия терминов, определений и пояснений строительных материалов

АБСОЛЮТНО ЧЁРНОЕ ТЕЛО — физ. тело, полностью поглощающее весь падающий на него поток излучения независимо от длины волны. Коэффициент поглощения равен единице. Наиболее близким приближением к А. ч. т. является сосуд с небольшим отверстием, стенки которого имеют… … Большая политехническая энциклопедия

абсолютно чёрное тело — visiškai juodas kūnas statusas T sritis radioelektronika atitikmenys: angl. >Radioelektronikos terminų žodynas

абсолютно чёрное тело — absoliučiai juodas kūnas statusas T sritis fizika atitikmenys: angl. absolute black body vok. absolut schwarzer Körper, m rus. абсолютно чёрное тело, n pranc. corps noir absolu, m … Fizikos terminų žodynas

АБСОЛЮТНО ЧЁРНОЕ ТЕЛО — тело, к рое полностью поглощает всё падающее на него эл. магн. излучение; спектр излучения А. ч. т. определяется только его темп рой, и распределение энергии в нём подчиняется Планка закону излучения. Свойствами А. ч. т. обладает устройство,… … Естествознание. Энциклопедический словарь

абсолютно чёрное тело — тело, которое полностью поглощает всё падающее на него электромагнитное излучение; спектр излучения абсолютно черного тела определяется только его температурой, и распределение энергии в нём подчиняется закону излучения Планка. Свойствами… … Энциклопедический словарь

Абсолютно чёрное тело — физическое тело, которое при любой температуре поглощает всё падающее на него электромагнитное излучение во всех диапазонах [1] .

Таким образом, у абсолютно чёрного тела поглощательная способность (отношение поглощённой энергии к энергии падающего излучения) равна 1 для излучения всех частот, направлений распространения и поляризаций [2] [3] .

Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметь цвет. Спектр излучения абсолютно чёрного тела определяется только его температурой.

Важность абсолютно чёрного тела в вопросе о спектре теплового излучения любых (серых и цветных) тел вообще, кроме того, что оно представляет собой наиболее простой нетривиальный случай, состоит ещё и в том, что вопрос о спектре равновесного теплового излучения тел любого цвета и коэффициента отражения сводится методами классической термодинамики к вопросу об излучении абсолютно чёрного тела (и исторически это было уже сделано к концу XIX века, когда проблема излучения абсолютно чёрного тела вышла на первый план).

Близким к единице коэффициентом поглощения обладают сажа и платиновая чернь [3] . Сажа поглощает до 99 % падающего излучения (то есть имеет альбедо, равное 0,01) в видимом диапазоне длин волн, однако инфракрасное излучение поглощается ею значительно хуже. Наиболее чёрное из всех известных веществ — изобретённая в 2014 году субстанция Vantablack, состоящая из параллельно ориентированных углеродных нанотрубок, — поглощает 99,965 % падающего на него излучения в диапазонах видимого света, микроволн и радиоволн.

Среди тел Солнечной системы свойствами абсолютно чёрного тела в наибольшей степени обладает Солнце. Максимум энергии излучения Солнца приходится примерно на длину волны 450 нм, что соответствует температуре наружных слоёв Солнца около 6000 K (если рассматривать Солнце как абсолютно чёрное тело) [4] .

Термин «абсолютно чёрное тело» был введён Густавом Кирхгофом в 1862 году.

Содержание

Практическая модель [ править | править код ]

Абсолютно чёрных тел в природе не существует (чёрная дыра поглощает всё падающее излучение, но её температуру невозможно контролировать), поэтому в физике для экспериментов используется модель. Она представляет собой непрозрачную замкнутую полость с небольшим отверстием, стенки которой имеют одинаковую температуру. Свет, попадающий внутрь сквозь это отверстие, после многократных отражений будет полностью поглощён, и отверстие снаружи будет выглядеть совершенно чёрным [3] . Но при нагревании этой полости у неё появится собственное видимое излучение. Поскольку излучение, испущенное внутренними стенками полости, прежде, чем выйдет (ведь отверстие очень мало), в подавляющей доле случаев претерпит огромное количество новых поглощений и излучений, то можно с уверенностью сказать, что излучение внутри полости находится в термодинамическом равновесии со стенками. (На самом деле, отверстие для этой модели вообще не важно, оно нужно только чтобы подчеркнуть принципиальную наблюдаемость излучения, находящегося внутри; отверстие можно, например, совсем закрыть, и быстро приоткрыть только тогда, когда равновесие уже установилось и проводится измерение).

Законы излучения абсолютно чёрного тела [ править | править код ]

Классический подход [ править | править код ]

Изначально к решению проблемы были применены чисто классические методы, которые дали ряд важных и верных результатов, однако полностью решить проблему не позволили, приведя в конечном итоге не только к резкому расхождению с экспериментом, но и ко внутреннему противоречию — так называемой ультрафиолетовой катастрофе.

Изучение законов излучения абсолютно чёрного тела явилось одной из предпосылок появления квантовой механики.

Первый закон излучения Вина [ править | править код ]

  • u ν = ν 3 f ( ν T ) , <displaystyle u_<
    u >=
    u ^<3>fleft(<frac <
    u >>
    ight),>

где uν — плотность энергии излучения,

ν — частота излучения, T — температура излучающего тела, f — функция, зависящая только от отношения частоты к температуре. Вид этой функции невозможно установить, исходя только из термодинамических соображений.

Первая формула Вина справедлива для всех частот. Любая более конкретная формула (например, закон Планка) должна удовлетворять первой формуле Вина.

Из первой формулы Вина можно вывести закон смещения Вина (закон максимума) и закон Стефана — Больцмана, но нельзя найти значения постоянных, входящих в эти законы.

Читайте также:  Тв приставка на ардуино

Исторически именно первый закон Вина назывался законом смещения, но в настоящее время термином «закон смещения Вина» называют закон максимума.

Второй закон излучения Вина [ править | править код ]

В 1896 году Вин на основе дополнительных предположений вывел второй закон:

u ν = C 1 ν 3 e − C 2 ν T , <displaystyle u_<
u >=C_<1>
u ^<3>e^<-C_<2><frac <
u >>>,>

где C1, C2 — константы. Опыт показывает, что вторая формула Вина справедлива лишь в пределе высоких частот (малых длин волн). Она является частным конкретным случаем первого закона Вина.

Позже Макс Планк показал, что второй закон Вина следует из закона Планка для больших энергий квантов, а также нашёл постоянные C1 и C2 . С учётом этого, второй закон Вина можно записать в виде:

u ν = 8 π h ν 3 c 3 e − h ν / k T , <displaystyle u_<
u >=<frac <8pi h
u ^<3>><3>>>e^<-h
u /kT>,>

Закон Рэлея — Джинса [ править | править код ]

Попытка описать излучение абсолютно чёрного тела исходя из классических принципов термодинамики и электродинамики приводит к закону Рэлея — Джинса:

u ( ω , T ) = k T ω 2 π 2 c 3 <displaystyle u(omega ,T)=kT<frac <omega ^<2>><pi ^<2>c^<3>>>>

Эта формула предполагает квадратичное возрастание спектральной плотности излучения в зависимости от его частоты. На практике такой закон означал бы невозможность термодинамического равновесия между веществом и излучением, поскольку согласно ему вся тепловая энергия должна была бы перейти в энергию излучения коротковолновой области спектра. Такое гипотетическое явление было названо ультрафиолетовой катастрофой.

Тем не менее закон излучения Рэлея — Джинса справедлив для длинноволновой области спектра и адекватно описывает характер излучения. Объяснить факт такого соответствия можно лишь при использовании квантово-механического подхода, согласно которому излучение происходит дискретно. Исходя из квантовых законов можно получить формулу Планка, которая будет совпадать с формулой Рэлея — Джинса при ℏ ω / k T ≪ 1 <displaystyle hbar omega /kTll 1> .

Этот факт является прекрасной иллюстрацией действия принципа соответствия, согласно которому новая физическая теория должна объяснять всё то, что была в состоянии объяснить старая.

Закон Планка [ править | править код ]

Интенсивность излучения абсолютно чёрного тела в зависимости от температуры и частоты определяется законом Планка [5] :

R ( ν , T ) = 2 π h ν 3 c 2 1 e h ν / k T − 1 , <displaystyle R(
u ,T)=<frac <2pi h
u ^<3>><2>>><frac <1>-1>>,>

где R ( ν , T ) <displaystyle R(
u ,T)> — мощность излучения на единицу площади излучающей поверхности в единичном интервале частот (размерность в СИ: Дж·с −1 ·м −2 ·Гц −1 ), что эквивалентно

R ( λ , T ) = 2 π h c 2 λ 5 1 e h c / λ k T − 1 , <displaystyle R(lambda ,T)=<2pi h<2>> over lambda ^<5>><1 over e^-1>,>

где R ( λ , T ) <displaystyle R(lambda ,T)> — мощность излучения на единицу площади излучающей поверхности в единичном интервале длин волн (размерность в СИ: Дж·с −1 ·м −2 ·м −1 ).

Закон Стефана — Больцмана [ править | править код ]

Общая энергия теплового излучения определяется законом Стефана — Больцмана, который гласит:

Мощность излучения абсолютно чёрного тела (интегральная мощность по всему спектру), приходящаяся на единицу площади поверхности, прямо пропорциональна четвёртой степени температуры тела:

j = σ T 4 , <displaystyle j=sigma T^<4>,>

где j <displaystyle j> — мощность на единицу площади излучающей поверхности, а

σ = 2 π 5 k 4 15 c 2 h 3 = π 2 k 4 60 ℏ 3 c 2 ≃ 5,670 400 ( 40 ) ⋅ 10 − 8 <displaystyle sigma =<frac <2pi ^<5>k^<4>><15c^<2>h^<3>>>=<frac <pi ^<2>k^<4>><60hbar ^<3>c^<2>>>simeq 5<,>670400(40)cdot 10^<-8>> Вт/(м²·К 4 ) — постоянная Стефана — Больцмана.

Таким образом, абсолютно чёрное тело при T <displaystyle T> = 100 K излучает 5,67 ватт с квадратного метра своей поверхности. При температуре 1000 K мощность излучения увеличивается до 56,7 киловатт с квадратного метра.

Для нечёрных тел можно приближённо записать:

j = ϵ σ T 4 , <displaystyle j=epsilon sigma T^<4>, >

где ϵ <displaystyle epsilon > — степень черноты. Для всех веществ ϵ 1 <displaystyle epsilon , для абсолютно чёрного тела ϵ = 1 <displaystyle epsilon =1> , для других объектов в силу закона Кирхгофа степень черноты равна коэффициенту поглощения: ϵ = α = 1 − ρ − τ <displaystyle epsilon =alpha =1-
ho – au > , где α <displaystyle alpha > — коэффициент поглощения, ρ <displaystyle
ho > — коэффициент отражения, а τ <displaystyle au > — коэффициент пропускания. Именно поэтому для уменьшения тепловой радиации поверхность окрашивают в белый цвет или наносят блестящее покрытие, а для увеличения — затемняют.

Константу Стефана — Больцмана σ <displaystyle sigma > можно теоретически вычислить только из квантовых соображений, воспользовавшись формулой Планка. В то же время общий вид формулы может быть получен из классических соображений (что не снимает проблемы ультрафиолетовой катастрофы).

Закон смещения Вина [ править | править код ]

Длина волны, при которой энергия излучения абсолютно чёрного тела максимальна, определяется законом смещения Вина:

λ max = 0,002 8999 T <displaystyle lambda _<max >=<frac <0<,>0028999>>>

где T <displaystyle T> — температура в кельвинах, а λ max <displaystyle lambda _<max >> — длина волны с максимальной интенсивностью в метрах.

Так, если считать в первом приближении, что кожа человека близка по свойствам к абсолютно чёрному телу, то максимум спектра излучения при температуре 36 °C (309 K) лежит на длине волны 9400 нм (в инфракрасной области спектра).

Видимый цвет абсолютно чёрных тел с разной температурой представлен на диаграмме.

Чернотельное излучение [ править | править код ]

Электромагнитное излучение, находящееся в термодинамическом равновесии с абсолютно чёрным телом при данной температуре (например, излучение внутри полости в абсолютно чёрном теле), называется чернотельным (или тепловым равновесным) излучением. Равновесное тепловое излучение однородно, изотропно и неполяризовано, перенос энергии в нём отсутствует, все его характеристики зависят только от температуры абсолютно чёрного тела-излучателя (и, поскольку чернотельное излучение находится в тепловом равновесии с данным телом, эта температура может быть приписана излучению). Объёмная плотность энергии чернотельного излучения равна u = 4 σ c T 4 , <displaystyle u=<frac <4sigma >>T^<4>,> его давление равно P = u / 3 = 4 σ 3 c T 4 . <displaystyle P=u/3=<frac <4sigma ><3c>>T^<4>.> Очень близко по своим свойствам к чернотельному так называемое реликтовое излучение, или космический микроволновой фон — заполняющее Вселенную излучение с температурой около 3 K.

Чернотельным также является излучение Хокинга (квантовомеханическое испарение чёрных дыр). Это излучение имеет температуру T B H = ℏ c 3 8 π k G M <displaystyle T_= <hbar ,c^<3>over 8pi k,GM>>

Цветность чернотельного излучения [ править | править код ]

Цветность чернотельного излучения, или, вернее, цветовой тон излучения абсолютно чёрного тела при его определённой температуре, приведена в таблице:

Температурный интервал в кельвинах Цвет
до 1000 Красный
1000—2000 Оранжевый
2000—3000 Жёлтый
3000—4500 Бледно-жёлтый
4500—5500 Желтовато-белый
5500—6500 Чисто белый
6500—8000 Голубовато-белый
8000—15000 Бело-голубой
15000 и более Голубой

Цвета даны в сравнении с рассеянным дневным светом (D65). Реально воспринимаемый цвет может быть искажён адаптацией глаза к условиям освещения.

Термодинамика равновесного теплового излучения [ править | править код ]

В термодинамике равновесное тепловое излучение рассматривают как фотонный газ, состоящий из электронейтральных безмассовых частиц, заполняющий полость объёмом V в абсолютно чёрном теле (см. раздел «Практическая модель»), с давлением P и температурой T , совпадающей с температурой стенок полости. Для фотонного газа справедливы следующие термодинамические соотношения [6] [7] [8] [9] :

Оцените статью
Добавить комментарий

Adblock detector