Фреон кипит при температуре

Основные функции кондиционера – это охлаждение и обогрев воздуха, уже находящегося внутри помещения. Это означает, что кондиционер в общем случае не производит притока свежего воздуха с улицы или вытяжки воздуха из помещения. Для задач вытяжки и притока служит вентиляционное оборудование.

Охлаждение воздуха в кондиционерах происходит при помощи компрессионного цикла охлаждения.

Температура кипения

Температура кипения жидкости зависит от давления окружающей среды. Чем ниже это давление, тем ниже температура кипения.

Например, общеизвестно, что вода закипает при температуре 100С. Но это происходит лишь при нормальном атмосферном давлении (760 мм рт. ст.). При повышении давления температура кипения возрастет, а при его понижении (например, высоко в горах) вода закипит при температуре гораздо ниже 100С. В среднем, при изменении давления на 27 мм .рт. ст. температура кипения изменится на 1С.

Различные жидкости кипят при разных температурах даже при одинаковом внешнем давлении.

  • Например, жидкий азот кипит при температуре около -77;С, а фреон R-22, который применяется в холодильной технике – при температуре -40.8С (при нормальном атмосферном давлении).
^

Теплота парообразования

При испарении жидкости теплота поглощается из окружающей среды. При конденсации пара тепло, напротив, выделяется. Теплота парообразования жидкостей очень велика.

  • Например, энергия, нужная для испарения 1 г воды при температуре 100С (539 калорий/г), значительно больше энергии, необходимой для нагревания этой воды от 0;С до 100С (100 калорий/г)!

Если жидкий фреон поместить в открытый сосуд (с атмосферным давлением и комнатной температурой), то он сразу же вскипит, поглощая при этом большое количество теплоты из окружающей среды.

Это явление и используется в холодильной машине. Только в ней фреон превращается в пар в специальном отделении – испарителе. Трубки испарителя обдуваются потоком воздуха. Кипящий фреон поглощает тепло из этого воздушного потока, охлаждая его.

Но в холодильной машине невозможно только испарять фреон, поглощая тепло. Ведь тогда в ней образуется большое количество паров и потребуется подводить все новый и новый жидкий фреон постоянно. Поэтому в холодильной машине производится и обратный процесс конденсации – превращения из пара в жидкость.

При конденсации любой жидкости выделяется теплота, которая поступает затем в окружающую среду. Температура конденсации, как и температура кипения, зависит от внешнего давления. При повышенном давлении конденсация может происходить при весьма высоких температурах.

  • К примеру, фреон R-22 начинает конденсироваться при +55С, если находится под давлением 23 атмосферы (около 17,5 тыс. мм рт. ст.).
^

Холодильная машина

В холодильной машине фреон конденсируется в специальном отделении – конденсаторе. Тепло, выделившееся при конденсации, удаляется потоком охлаждающей жидкости или воздуха.

Поскольку холодильная машина должна работать непрерывно, то в испаритель должен постоянно поступать жидкий фреон, а в конденсатор – его пары. Этот процесс – циклический, ограниченное количество фреона циркулирует по холодильной машине, испаряясь и конденсируясь.

Энтальпия хладагента

Происходящий в холодильной машине цикл охлаждения удобно изображать графически. На диаграмме показано соотношение давления и теплосодержания (энтальпии) хладагента.

Энтальпия – это функция состояния, приращение которой при процессе с постоянным давлением равно теплоте, полученной системой.

На диаграмме показана кривая насыщения хладагента.

  • Левая ветвь кривой соответствует насыщенной жидкости
  • Правая часть соответствует насыщенному пару.
  • В критической точке ветви кривой соединяются, и вещество может находиться и в жидком, и в газообразном состоянии.
  • Внутри кривой – зона, соответствующая смеси пара и жидкости.
  • Слева от кривой (в области меньшей энтальпии) – переохлажденная жидкость.
  • Справа от кривой (в области большей энтальпии) – перегретый пар.

Теоретический цикл охлаждения несколько отличается от реального. В действительности происходят потери давления на разных этапах перекачки хладагента, снижающие эффективность охлаждения. Это не учитывается в идеальном цикле

Теоретический цикл охлаждения

В компрессоре

Холодный насыщенный пар хладагента поступает в компрессор холодильной машины (точка С1). В процессе сжатия его давление и температура повышаются (точка D). Энтальпия тоже повышается на величину, равную проекции линии С1-D. На схеме это отрезок НС1-НD.

Конденсация

В конце цикла сжатия хладагента горячий пар попадает в конденсатор. Здесь при постоянных температуре и давлении происходит конденсация, и горячий пар превращается в горячую жидкость. Хотя температура практически постоянна, энтальпия уменьшается при фазовом переходе, а выделившееся тепло отводится от конденсатора. Этот процесс отображается на диаграмме в виде отрезка, параллельного горизонтальной оси (давление постоянно).

Процесс в конденсаторе холодильной машины происходит в три этапа: снятие перегрева (D-Е), конденсация (Е-А) и переохлаждение жидкости (А-А1). Участок диаграммы D-А1 соответствует изменению энтальпии хладагента в конденсаторе и показывает, какое количество тепла выделяется в ходе данного процесса.

  • Снятие перегрева.
    В этом процессе температура пара снижается до температуры насыщения. Излишнее тепло отводится, но изменения агрегатного состояния не происходит. На этом этапе снимается около 10 – 20% тепла.
  • Конденсация
    На этом этапе происходит изменение агрегатного состояния хладагента. Температура при этом остается постоянной. На этом этапе снимается около 60 – 80% тепла.
  • Переохлаждение жидкости
    В этом процессе жидкий хладагент охлаждается, при этом получается переохлажденная жидкость. Агрегатное состояние не изменяется.
    Переохлаждение жидкости на этом этапе позволяет повысить производительность холодильной машины. При постоянном уровне энергопотребления понижение температуры на 1 градус повышает производительность холодильной машины на 1%.

Регулятор потока

Переохлажденная жидкость с параметрами точки А2 поступает на регулятор холодильной машины. Он представляет собой капиллярную трубку или терморегулирующий расширительный клапан. В регуляторе происходит резкое снижение давления. Непосредственно за регулятором начинается кипение хладагента. Параметры получившейся смеси пара и жидкости соответствуют точке В.

В испарителе

Смесь пара и жидкости (точка В) попадает в испаритель холодильной машины, где поглощает тепло от окружающей среды и полностью переходит в пар (точка С1). Этот процесс происходит при постоянной температуре, но энтальпия при этом увеличивается.

На выходе испарителя парообразный хладагент немного перегревается (отрезок С1-С2), чтобы капли жидкости испарились полностью. Для этого приходится увеличивать площадь теплообменной поверхности испарителя (на 4-6% на каждый градус перегрева). Обычно перегрев составляет 5-8 градусов, и увеличение площади теплообмена достигает 20%.

В испарителе холодильной машины энтальпия хладагента изменяется на величину НВ-НС2, равную проекции кривой испарения на горизонтальную ось.

Читайте также:  Сплиттер vdsl и adsl

Реальный цикл охлаждения

Реальный цикл охлаждения имеет некоторые отличия от идеального. Это происходит за счет потерь давления, возникающих на линии всасывания и нагнетания холодильной машины, а также в клапанах компрессора. Поэтому отображение реального цикла на диаграмме связи давления и энтальпии несколько иное.

Из-за потерь давления на входе в компрессор всасывание должно проходить при давлении, которое ниже давления испарения (отрезок C1-L). Кроме того, из-за потерь давления на выходе компрессору приходится сжимать пар хладагента до давления, которое выше давления конденсации (M-D1). Таким образом, работа сжатия увеличивается. Такая компенсация потерь давления в реальной холодильной машине снижает эффективность цикла.

Кроме потерь давления в трубопроводе, есть и другие отклонения от идеального цикла. Во-первых, реальное сжатие хладагента в компрессоре не может быть строго адиабатическим (без подвода и отвода тепла). Поэтому работа сжатия оказывается выше теоретически рассчитанной. Во-вторых, в компрессоре холодильной машины имеются механические потери энергии, что приводит к увеличению необходимой мощности электродвигателя.

Эффективность цикла охлаждения холодильной машины

Отображение на диаграмме:
C1-L – потеря давления при всасывании
M-D1 – потеря давления при выходе
HD-HC1 – теоретическое изменение энтальпии (теплосодержания) при сжатии
HD1-HC1 – реальное изменение энтальпии (теплосодержания) при сжатии
C1D – теоретическое сжатие
LM – реальное сжатие

Для выбора лучшего из циклов охлаждения необходимо оценивать их эффективность. Обычно показателем эффективности цикла холодильной машины служит КПД или коэффициент термической (термодинамической) эффективности.
Коэффициент термической эффективности – это:

  • отношение изменения энтальпии хладагента в испарителе (НС-НВ) к изменению энтальпии в процессе сжатия (HD-HC).
  • или: соотношение мощности охлаждения и электрической мощности, которую потребляет компрессор холодильной машины.

Например, если коэффициент термической эффективности какой-либо холодильной машины равен 2, то на каждый кВт потребляемой электроэнергии эта машина производит 2 кВт холода.

Охлаждение в холодильной машине происходит за счет теплопоглощения при кипении жидкости (фреона) – газообразного вещества, являющегося не только основным функциональным элементом, но и частью смазочного материала для компрессора вместе с маслом.

Он не имеет цвета, запаха и практически не способен воспламеняться, за исключением его прямого контакта с открытым пламенем при температуре не менее 900°C.

Чтобы в холодильной установке происходил непрерывный цикл преобразований хладона (испарение и конденсация), важно поддерживать нормальное давление в системе, благодаря которому будет оставаться допустимая температура закипания хладагента.

Температура кипения фреона в кондиционере совершенно не равна привычным показателям, при которых кипит та же вода. В данном случае она зависит от давления окружающей среды. Чем оно выше, тем выше ее показатели, и наоборот, чем ниже давление, тем ниже ее параметры. Но они всегда имеют низкие значения.

Разные типы фреонов, отличающиеся физическими свойствами и химическим составом, имеют разные температуры кипения в кондиционере при остальных одинаковых условиях. В холодильных установках чаще применяют хладагенты R-22, R-134a, R-407, R-410a. Последний считается наиболее безопасным, так как не представляет угрозу для окружающей среды и человека. Но его применение в кондиционере увеличивает цену на устройство.

Данная ниже таблица температур кипения фреонов разных типов в кондиционерах – это часть таблицы, которой пользуются монтажники при заправке или дозаправке холодильных машин. Это своего рода замена линейке зависимости температуры кипения от давления, используемой на производстве или в сервисных центрах. Приведенные значения нормальной температуры подразумевают нормативное атмосферное давление в 0,1 МПа.

Тип фреона Нормальная температура кипения, °C Критическое давление, МПа Критическая температура кипения, °C R-22 -40,85 4,986 96,13 R-410a -51,53 4,926 72,13 R-134a -26,5 4,06 101,5 R-407 -43,8 4,63 86,0

Чрезмерное нагревание хладона может вызвать выброс опасных для здоровья человека веществ и разрежение в испарителе.

Утечка фреона в кондиционере

Для кондиционера является нормой утечка фреона на 4-7% от общей массы за год. Восполнение потерь в среднем требуется проводить раз в полтора или два года. Если межблочные магистрали смонтированы некачественно, то через плохо сделанные вальцовочные соединения хладагент выходит в большем количестве. Тогда может пойти речь о закачке фреона в кондиционер в полном объеме или о возникновении предварительной необходимости восполнять потери.

При игнорировании проблемы прибор постепенно начинает работать на пределах своих возможностей, вследствие чего происходит поломка компрессора, который попросту перестает смазываться.

Как определить утечку

Специалисту несложно определить, есть ли утечка фреона из кондиционера, но сам пользователь тоже должен знать некоторые признаки потерь основного рабочего вещества. Насторожить должны:

  • на местах стыковок хладотрассы и клапанов наружного модуля появляются заметные иней или наледь;
  • сильно снижается качество охлаждения;
  • при включении сплит-системы пахнет гарью;
  • под кранами можно заметить подтеки масла – оно и дает неприятный запах;
  • темнеет компрессорная теплоизоляция;
  • прибор отключается и на дисплее высвечиваются коды ошибок.

При обнаружении каких-либо признаков утечки фреона из кондиционера следует сразу отключить устройство от питания и вызвать мастера.

Специалист через манометрическую станцию подключит баллон с азотом, перекроет порты и запустит в систему избыточное давление. Он должен сразу же обмылить трубы и предполагаемые места утечки. Если появился свист, и в каком-то месте мыльный раствор запузырился, то именно там и есть отверстие, через которое уходит газ. Таким образом определяется утечка фреона из кондиционера, после чего начинается устранение неполадок.

Вместо мыльного раствора можно использовать специальную концентрированную жидкость, которую загоняют в контур, а потом просвечивают ультрафиолетовым осветительным прибором возможные места потерь хладагента.

Есть ли еще способы того, как определить утечку фреона из кондиционера бытового назначения? Для одного из них понадобится особый прибор – электронный течеискатель, который оснащается гибким зондом с чувствительным сенсором – он позволяет добраться до самых трудных мест.
Определить недостаточное количество фреона в старт-стоповом кондиционере можно также с помощью термометра, который подносят к выходящему из вентилятора воздуху. Если показатели не выходят за установленные нормы в 5-8°C, то восполнение газа не нужно.
Если причина потерь заключается в негерметичности межблочных соединений, то мастер приступит к пайке труб и последующей дозаправке прибора рабочим веществом.

Заправка и дозаправка кондиционера фреоном

Как происходит заправка кондиционеров фреоном, и чем она отличается от дозаправки?

Дозаправка – это частичное восполнение потерянного объема хладагента. Она может понадобиться при утечке или при профилактической заправке. Ее также осуществляют при увеличении трассы во время монтажа. В среднем заводской объем закаченного хладона рассчитан на 5 метров трассы. Если происходит увеличение ее длины, то требуется дозаправка кондиционера фреоном из расчета 30 гр на метр магистрали.

Читайте также:  Трансформатор 220 на 12 вольт для автомагнитолы

Для бытовых кондиционеров с фреоном R-22 и ему подобных применяют способ дозаправки, а для систем с хладоном R-410a используют только метод полной заправки. Этот газ состоит из смеси химических веществ с разной степенью летучести, которые испаряются совершенно неравномерно, следовательно, состав оставшегося вещества сильно меняется.

Полная заправка – это восполнение всего объема газа в холодильном устройстве. Она необходима при заправке бытовых кондиционеров фреоном после переезда, когда предварительно весь хладагент был спущен, или при восполнении объема хладона, имеющего сложный компонентный состав.

Выпуск фреона из кондиционера

Прежде чем закачать фреон в кондиционер при полной заправке, из него необходимо выпустить оставшийся газ. Как правильно слить фреон с кондиционера, и какие инструменты понадобятся для этого?

Некоторые мастера не видят ничего страшного в том, чтобы просто ослабить гайки на внешнем блоке и стравить все в атмосферу, считая небольшое количество хладагента для окружающей среды безопасным. В чистом виде он на самом деле безвреден, но делать так не стоит. Для его выпуска из кондиционера необходимо иметь станцию по сбору фреона, которая врезается в систему кондиционирования при помощи специального штуцера и откачивает весь газ из нее.

Далее производят вакуумирование, и только после этого подключают баллон с фреоном и производят его закачку в кондиционер по необходимой норме.

Сколько нужно фреона

В разных холодильных системах находится разное количество хладагента. То, сколько в кондиционере может быть фреона, зависит от холодопроизводительности агрегата. В среднем его объем составляет в стандартных сплитах от 700-800 грамм, а в мощных установках коммерческого или промышленного назначения более килограмма.

Требуемый объем указывается производителем на шильдике, представляющем собой металлическую табличку на внутреннем корпусе сплита. Он помогает определить, сколько фреона в кондиционере должно находиться. Используя манометр, мастер определяет величину давления в охлаждающем корпусе и смотрит эту табличку.

В идеале заправка бытовых кондиционеров фреоном должна происходить маленькими порциями, чтобы в систему не попало большее количество газа, так как его переизбыток ведет к неэффективной работе – он не успевает пройти полный цикл трансформации из одного состояния в другое.

Способы заправки кондиционера

Заправка кондиционера может производиться несколькими способами, но наиболее простыми и часто применимыми являются:

  • заправка по массе (по весам) – понадобится дорогостоящие весы для взвешивания баллона с хладагентом;
  • заправка по давлению – при значениях ниже 3-3,5 атм требуется восполнение газа;
  • по току – понадобятся токоизмерительные клещи, накладываемые на фазу провода питания работающего внешнего блока.

Существуют еще два способа: заправка по переохлаждению и по перегреву. Но в реальности их применяют только при проверке промышленных компрессорно-конденсаторных блоков, так как в бытовых сплитах нет устройства, регулирующего расход фреона. Его роль выполняет капиллярная трубка.

Если после полной или частичной заправки кондиционера его работа не выравнивается, то следует провести диагностику оборудования на обнаружение других неисправностей системы.

Только опытные монтажники знают все безопасные способы, как слить фреон в кондиционере и как восполнить его нехватку. Не стоит самим пытаться проводить такие действия, которые могут привести к ожогам кожных покровов или глаз, а также полностью вывести холодильную машину из строя.

Своевременное охлаждение холодильных агрегатов происходит благодаря кипению фреона — специального газообразного вещества, которое выполняет функцию элементарного теплообменника. Опытные мастера знают, что этот компонент выступает в качестве основного функционального элемента, а также отличного смазочного состава для компрессоров. Чтобы приобретённый агрегат служил как можно дольше, нужно знать температуру кипения фреона.

Чтобы кондиционеры и холодильники слаженно работали, а также сохранялся цикл испарения и конденсации, необходимо поддерживать оптимальный уровень давления во всей системе. В охлаждающих агрегатах могут быть использованы совершенно разные виды фреона, которые отличаются между собой не только химическим составом, но и многими другими характеристиками. Но чаще всего производители применяют следующие типы этого вещества:

Итоговая температура кипения у всех этих видов имеет разные показатели. Опытные мастера прекрасно знают, что перед заправкой того или иного холодильного аппарата необходимо учесть тип охлаждающей жидкости, которая ранее использовалась в работе.

Если у мастера нет в наличии необходимого фреона, тогда его можно смело заменить качественным хладагентом с аналогичными показателями температуры кипения и давления.

Широко распространённую информацию о том, что рабочая жидкость R-410A полностью заменила R22 нельзя воспринимать буквально. Всё дело в том, что технические характеристики этих фреонов имеют весомые различия. Ту сплит-систему, которая была спроектирована производителями под один тип газовой смеси, строго запрещено заполнять какими-либо другими составами. Температура фреона, при которой он может закипеть, зависит от того, к какой категории он относится (от 11.73˚С до 128˚С).

Универсальный фреон R-410A был разработан ещё в 1991 году, а уже через 5 лет в продаже появились первые кондиционеры, в которых использовалась эта жидкость. Таким образом, производители хотели заменить давно устаревшие газовые смеси, которые содержали опасный для человека хлор. Когда происходила утечка этой жидкости и испарения попадали в атмосферу, то изначально страдал озоновый слой, что только усиливало неблагоприятный парниковый эффект. В то время как современный вид фреона полностью соответствует всем требованиям.

Фреон считается одинаково эффективным в сплит-системах, чиллере с водяным конденсатором и винтовым компрессором. Но, такой сжиженный газ высокого давления нуждается в специальных рабочих узлах и высококачественных деталях. Специалисты стараются изобрести совершенно инновационные модели холодильной и климатической техники. Расширенные технические характеристики позволяют использовать фреон в различных устройствах:

  • Затопленные испарители.
  • Центробежные компрессоры.
  • Насосные холодильные агрегаты.

Качественный фреон широко используется в бытовых и промышленных системах кондиционирования, а также теплонаносных установках. Специальная смесь с азеотропными свойствами идеально подходит для агрегатов с теплообменниками затопленного типа. Высокая плотность позволяет применять такой хладагент в различных целях:

  • Бытовые холодильники.
  • Универсальные транспортные охладительные системы.
  • Пищевое и торговое холодильное оборудование.
  • Мощные установки для кондиционирования воздуха в общественных зданиях, офисах и промышленных объектах.

Практически все известные виды фреона отличаются отрицательной температурой кипения, благодаря чему их активно используют в различных охлаждающих установках и бытовой технике. Помимо этого, такая жидкость просто необходима в освежителях воздуха, газовых баллончиках и других аэрозолях, где хладагент выполняет функцию выталкивающего элемента. После распыления баллон постепенно охлаждается. А сам фреон попадает в воздух. Если человек по неосторожности нагрел хладагент до критической отметки, то с его организмом ничего не случится, а вот озоновый слой пострадает серьёзно.

Многочисленные исследования показали, что масштабное производство фреона с высоким содержанием ионов хлора и брома негативно влияет на окружающую среду.

Удивительным считается то, что утечку этой жидкости из бытовой техники невозможно определить на запах. Небольшие дозы полностью безопасны для человека. Всегда нужно помнить, что у температуры кипения есть определённая зависимость от давления.

Читайте также:  Хороший духовой шкаф электрический отзывы 2018

Современный хладагент R-410A относится к группе специфических гидрофторуглеродов. Его состав рассматривается всемирными организациями как озонобезопасный. Касательно минимального температурного скольжения — этот параметр приравнивается к 0,15 К, благодаря чему он входит в категорию однокомпонентных хладонов. Широкий спектр применения фреона R-410A обусловлен тем, что он обладает множественными преимуществами:

  • Если из-за поломки газ вышел из сосуда, то его можно легко восполнить без потери качества самого хладагента.
  • Перед производителями открываются более широкие горизонты в сфере уменьшения энергопотребления техники.
  • Нет необходимости устанавливать мощный, дорогостоящий компрессор, так как теплообменник обладает высоким уровнем удельной холодопроизводительности.
  • Существенно возросла эффективность работы систем, так как фреон R-410A обладает низкой вязкостью и хорошей теплопроводностью.

Отрицательных сторон не так уж и много, но все они должны быть учтены не только опытными мастерами, но и обычными пользователями, которые используют бытовую технику с фреоном. К основным недостаткам относятся следующие:

  • Из-за разности давления по отношению к нагнетанию и всасыванию фреона уровень КПД компрессора может быть снижен.
  • Профессионалы отмечают быстрый износ подшипников, который обусловлен высоким рабочим давлением в системе.
  • Использование фреона влияет на то, что корпус бытовой техники должен обладать повышенной герметичностью. Итоговая толщина стенок медных труб рабочей магистрали должна быть больше, нежели для привычного хладагента R22. Минимальный показатель должен находиться в пределах 0,9 мм. Стоит отметить, что большой процент содержания меди ведёт к существенному удорожанию эксплуатируемой системы.
  • В кондиционерах используется высококачественное полиэфирное масло, которое стоит гораздо дороже, нежели минеральное.
  • Этот вид хладагента является несовместимым с элементами климатического оборудования. Правило касается тех деталей, которые изготовлены из эластомеров и чувствительных к пентафторэтану, дифторметану материалов.

Работоспособность техники зависит от качества заправленной охлаждающей жидкости. Внезапная утечка фреона чревата поломкой аппаратуры, из-за чего её больше нельзя использовать по прямому назначению. Чаще всего такая ситуация возникает на фоне того, что повредилась труба испарителя или же имеется заводской брак. В связи с тем, что фреон — это летучий газ, который не имеет запаха, его утечку невозможно обнаружить обычным обонятельным рецептором.

Среди опытных мастеров присутствуют некоторые признаки, которые помогают определить такого рода поломку. Заправленный в холодильник фреон всегда находится под давлением, а после повреждения трубки испарителя он начинает падать. Из-за этого в морозильной и холодильной камере постепенно поднимается температура воздуха, а продукты портятся. Именно это является первым признаком того, что нужно проверить целостность и работоспособность охладительной системы агрегата.

Определить утечку фреона из кондиционера помогут несколько простых фактов:

  1. 1. Качество охлаждения воздуха существенно снижается.
  2. 2. На местах стыковок клапанов наружного модуля и хладотрассы проявляется характерный иней либо наледь.
  3. 3. Компрессорная теплоизоляция начинает темнеть.
  4. 4. После включения сплит-системы в комнате пахнет гарью.
  5. 5. Оборудование может отключаться, а на табло высвечивается код ошибки.

В случае обнаружения каких-либо признаков утечки фреона из системы нужно сразу отключить оборудование от электропитания и вызвать опытного мастера.

Чтобы дозаправить систему, необходимо знать, какое именно давление должно быть в рабочем агрегате. Стоит отметить, что температура конденсации фреона R-410А находится в пределах +43˚С.

Прежде чем использовать фреон, нужно подготовить все необходимые инструменты и материалы. Для работы обязательно пригодится специальный манометр, мощный вакуумный насос, весы, по которым можно будет определить объём хладагента в оборудовании, а также баллон с охлаждающей жидкостью.

Все дальнейшие действия должны соответствовать следующей схеме:

  • Изначально необходимо аккуратно отключить охладитель от сети электроэнергии, а также определить необходимое для заправки количество охлаждающей жидкости по весу либо давлению в рабочей системе.
  • Мастер должен постепенно очистить трубки с помощью азота. Эти манипуляции помогут устранить из системы все лишние примеси, а также позволят убедиться в полной герметичности всех стыков. Такие действия особенно важны в том случае, если есть какие-либо подозрения на утечку фреона из-за повреждения какого-либо элемента.
  • На следующем этапе необходимо аккуратно закрыть трёхходовой клапан (исключительно по часовой стрелке).
  • Пришло время определить уровень давления и дозаправить хладагент. К штуцеру присоединяется специальный манометрический коллектор.
  • На завершающем этапе трёхходовой клапан снова открывается, а к коллектору подключается заранее подготовленный баллон с фреоном, чтобы перекачать его в систему.

Именно циркуляция обеспечивает качественное охлаждение не только кондиционера, но и любого другого холодильного оборудования. Кипение и конденсация фреона происходит в замкнутой системе. Эти два процесса имеют свои особенности. Тщательно изучив таблицу кипения фреона можно понять, что этот этап происходит при низком давлении, а вот конденсация — при высоком давлении и температуре. Этот этап работы принято называть холодильным циклом компрессионного типа. Равномерное движение хладагента и повышение давления до требуемых показателей просто невозможно без качественного компрессора. Мощность этого элемента должна соответствовать всем требованиям.

Тот, кто решил самостоятельно дозаправить систему используемого оборудования фреоном, должен знать поэтапную схему компрессионного цикла:

  • Когда вещество выходит из испарителя, оно переходит в состояние пара с низким давлением и такой же температурой.
  • На следующем этапе пар поступает в компрессионную установку, которая способствует повышению его давления до 24 атмосфер. Специалисты утверждают, что температура кипения фреона 410А находится в пределах -52˚С.
  • Заправленный фреон постепенно охлаждается и конденсируется (переходит в жидкое состояние). Стоит отметить, что этот процесс происходит благодаря воздушным или же водяным охладителям (всё зависит исключительно от разновидности агрегата).
  • После выхода из конденсатора хладагент попадает в специальный испаритель, где после снижения давления начинает потихоньку кипеть и переходит уже в газообразное состояние. Всё тепло из воздуха забирает фреон, который находится в испарителе.
  • В завершении цикла хладагент направляется в компрессор, где все этапы повторяются.

Специалисты отмечают тот факт, что абсолютно все холодильные цикли состоят всего из двух областей — с высоким и низким уровнем давления. Благодаря существующей разнице происходит своеобразное преобразование фреона, а также его длительная транспортировка по рабочей системе. Чем выше будет уровень давления, тем больше итоговая температура кипения.

Компрессионный цикл охлаждения применяется в работе большинства холодильных агрегатов. Несмотря на тот факт, что тип конструкции холодильников и кондиционеров существенно отличается, работают они по аналогичному принципу.

Оцените статью
Добавить комментарий

Adblock
detector