No Image

Функции внутренней памяти компьютера

СОДЕРЖАНИЕ
0 просмотров
22 января 2020

Каждый пользователь знает, что существует внутренняя память компьютера, но мало кто понимает, насколько она разнообразна, сколько существует различных её подтипов. Разбирая ПК, максимум, на что сможет указать неопытный человек, – это ОЗУ и жесткий диск. Давайте разберёмся, какие устройства внутренней памяти компьютера существуют.

Что это такое

Для начала введём определение. Внутренняя память компьютера – это устройство для хранения программ и данных, которые в конкретный момент времени участвуют в вычислении процессором. Говоря простым языком, когда вы запускаете на персональном компьютере какое-либо приложение, процессор пользуется ОЗУ, как листком бумаги, записывая на него исходные данные и промежуточные вычисления. Выделяют следующие виды внутренней памяти компьютера – постоянную и оперативную.

Особенности

Независимо от того, о чем идёт речь, нам необходимы критерии для определения качества запоминающего устройства. Назовём главные характеристики внутренней памяти компьютера:

  1. Общий объём. Он играет немаловажную роль. От него зависит, сколько информации можно разместить одновременно в кэше, а значит, и быстродействие компьютера. Иногда процессору нужно хранить обширные объёмы данных. При малых размерах памяти они просто не поместятся, и приложение будет "тормозить".
  2. Быстродействие. Оно же – время доступа. Определяет, насколько быстро происходит взаимодействие центрального процессора и памяти. От этого параметра зависит, как скоро будет проходить процесс записи-считывания байт данных в запоминающее устройство. В отличие от объёма памяти, пользователь не способен повышать этот параметр сверх конретного уровня, поскольку он определяется конструктивными особенностями, а также существующими технологиями и интерфейсом подключения.

Свойства

При рассмотрении темы статьи нельзя не упомянуть про свойства внутренней памяти компьютера. Информатика выделяет несколько критериев, по которым можно характеризовать ее.

  • Дискретность. Это такое свойство, позволяющее определить структуру любого вида памяти на компьютере. Внутренняя память состоит из множества ячеек, каждая из которых хранит всего 1 бит информации – минимальный неделимый объём. Ячейки объединяются в группы разрядов, хранящие по 8 бит, что равно 1 байту данных.
  • Адресуемость. Каждая ячейка памяти компьютера имеет свой адрес, к которому обращается процессор при работе, при необходимости извлечения данных.
  • Энергозависимость и энергонезависимость. В зависимости от типа рассматриваемой памяти, можно выделить эти подгруппы. Зависимость от электропитания означает, что при выключении компьютера все данные из памяти удаляются.

К внутренней памяти компьютера относятся ОЗУ, ПЗУ, кэш, CMOS и видеопамять, рассмотрим их поподробнее.

Постоянное запоминающее устройство. Было названо так, потому что данные, хранящиеся в нём, не подлежат изменению и предназначены исключительно для считывания. Содержимое этой памяти заполняется непосредственно при изготовлении, сюда могут входить программы для обслуживания персонального компьютера, поддержки операционной системы и устройств ввода-вывода, поэтому её называют ROM BIOS.

Однако эта память соответствовала своему названию исключительно на первом этапе своего создания. С развитием технологий стали выпускаться перепрограммируемые ПЗУ, для того чтобы можно было изменять их содержание в условиях эксплуатации.

Оперативная память

ОЗУ (оперативное записывающее устройство) по объёму является основным представителем внутренней памяти и служит для работы с информацией. Название приходит из функционала. Скорость взаимодействия с процессором настолько высока, что проходят доли секунды между запросом и ответом. Обозначается оперативная память как RAM – Random Access Memory.

ОЗУ хранит в себе все данные работающей программы. Поэтому и процессор способен работать с ней только после того, как она будет записана в оперативную память (ОП). Для взаимодействия с жестким диском ЦПУ обращается к буферу – еще одному виду ОП.

Главным недостатком (или конструктивной особенностью) оперативной памяти является её энергозависимость. То есть при выключении питания персонального компьютера все данные, которые в ней записаны, теряются. Основными характеристиками RAM являются:

Внутренняя память компьютера недостаточного объёма сильно снижает производительность. При недостатке RAM некоторые программы могут работать медленно, а некоторые откажутся запускаться вовсе.

Ещё один вид памяти персонального компьютера, являющийся самым быстродействующим. Кэш является посредником между центральным процессором и оперативной памятью. В нем хранятся наиболее часто используемые фрагменты RAM. Поскольку время обращения ЦПУ к нему намного меньше, то и среднее время работы процессора с "оперативкой" уменьшается.

CMOS-RAM

Специально выделенный участок внутренней памяти персонального компьютера для хранения его конфигурации. Своё название он получил от одноимённой технологии, которая обладает невысоким энергопотреблением. Эта память считается энергонезависимой, поскольку информация в ней не теряется при отключении питания ПК. Однако это не совсем так. Если вы вдруг забыли свой пароль от компьютера, вам достаточно снять крышку с системного блока, найти на материнской плате батарейку-таблетку и вынуть её. Без этого аккумулятора все настройки компьютера, включая пароль, будут обнулены.

Видео

Ещё одна внутренняя память персонального компьютера, служащая для хранения графической информации. В персональном компьютере существует 2 способа её реализации.

Первый – это встроенная видеокарта. В этом случае память реализуется на материнской плате. Второй вариант реализации видеопамяти – на встраиваемой видеокарте. Как и при работе с оперативкой, от объёма зависит количество информации, обрабатываемой центральным процессором, и скорость её вывода на экран. От объёма видеопамяти зависит быстродействие мощных графических редакторов, высококачественного видео и современных игр.

Развитие

Внутренняя память компьютера развивалась постепенно, проходя множество этапов. Говоря об ОП, можно выделить следующие её виды в порядке совершенствования:

  1. SIMM – самый первый прообраз оперативной памяти персонального компьютера. Имел 30 контактов общей длиной в 89 миллиметров. В настоящий момент найти такую планку практически невозможно.
  2. SIMM на 72 контакта являлась следующим шагом в развитии, но имела ещё большие размеры – примерно 103 миллиметра.
  3. DIMM – оперативная память, которую застали обычные пользователи. Была популярна вплоть до 2001 года.
  4. После всех предыдущих этапов наступила эра памяти формата DDR (184 контакта). Эта технология в корне меняет подход к проектированию. Вместо ускорения частоты обмена данными в ней увеличивается количество данных, передаваемых за один такт.
  5. DDR2 – имеющая 204 контакта, она должна была увеличить скорость работы и взаимодействия с процессором в 2 раза по сравнению со своим предшественником.
  6. DDR3 – очередной виток эволюции памяти, имеющей повышенные характеристики.
  7. DDR4 – вышедшая во втором квартале 2014 года в массовые продажи оперативная память. Имеет 288 контактов и увеличенную в 2 раза пропускную способность.
Читайте также:  Что такое chkdsk на виндовс 7

Вывод

Прочитав эту статью, вы узнали, что такое внутренняя память компьютера, каково её строение, виды и характеристики. В жизни это может мало пригодиться, разве что для сдачи экзаменов в университете или общего самообразования.

Компью́терная па́мять (устройство хранения информации, запоминающее устройство) — часть вычислительной машины, физическое устройство или среда для хранения данных, используемая в вычислениях в течение определённого времени. Память, как и центральный процессор, является неизменной частью компьютера с 1940-х годов. Память в вычислительных устройствах имеет иерархическую структуру и обычно предполагает использование нескольких запоминающих устройств, имеющих различные характеристики.

В персональных компьютерах «памятью» часто называют один из её видов — динамическая память с произвольным доступом (DRAM), — которая используется в качестве ОЗУ персонального компьютера.

Задачей компьютерной памяти является хранение в своих ячейках состояния внешнего воздействия, запись информации. Эти ячейки могут фиксировать самые разнообразные физические воздействия. Они функционально аналогичны обычному электромеханическому переключателю и информация в них записывается в виде двух чётко различимых состояний — 0 и 1 («выключено»/«включено»). Специальные механизмы обеспечивают доступ (считывание, произвольное или последовательное) к состоянию этих ячеек.

Процесс доступа к памяти разбит на разделённые во времени процессы — операцию записи (сленг. прошивка, в случае записи ПЗУ) и операцию чтения, во многих случаях эти операции происходят под управлением отдельного специализированного устройства — контроллера памяти.

Также различают операцию стирания памяти — занесение (запись) в ячейки памяти одинаковых значений, обычно 0016 или FF16.

Наиболее известные запоминающие устройства, используемые в персональных компьютерах: модули оперативной памяти (ОЗУ), жёсткие диски (винчестеры), дискеты (гибкие магнитные диски), CD- или DVD-диски, а также устройства флеш-памяти.

Содержание

Функции памяти [ править | править код ]

Компьютерная память обеспечивает поддержку одной из функций современного компьютера, — способность длительного хранения информации. Вместе с центральным процессором запоминающее устройство являются ключевыми звеньями так называемой архитектуры фон Неймана, — принципа, заложенного в основу большинства современных компьютеров общего назначения.

Первые компьютеры использовали запоминающие устройства исключительно для хранения обрабатываемых данных. Их программы реализовывались на аппаратном уровне в виде жёстко заданных выполняемых последовательностей. Любое перепрограммирование требовало огромного объёма ручной работы по подготовке новой документации, перекоммутации, перестройки блоков и устройств и т. д. Использование архитектуры фон Неймана, предусматривающей хранение компьютерных программ и данных в общей памяти, коренным образом переменило ситуацию.

Любая информация может быть измерена в битах и потому, независимо от того, на каких физических принципах и в какой системе счисления функционирует цифровой компьютер (двоичной, троичной, десятичной и т. п.), числа, текстовая информация, изображения, звук, видео и другие виды данных можно представить последовательностями битовых строк или двоичными числами. Это позволяет компьютеру манипулировать данными при условии достаточной ёмкости системы хранения (например, для хранения текста романа среднего размера необходимо около одного мегабайта).

К настоящему времени создано множество устройств, предназначенных для хранения данных, основанных на использовании самых разных физических эффектов. Универсального решения не существует, у каждого имеются свои достоинства и свои недостатки, поэтому компьютерные системы обычно оснащаются несколькими видами систем хранения, основные свойства которых обуславливают их использование и назначение.

Физические основы функционирования [ править | править код ]

В основе работы запоминающего устройства может лежать любой физический эффект, обеспечивающий приведение системы к двум или более устойчивым состояниям. В современной компьютерной технике часто используются физические свойства полупроводников, когда прохождение тока через полупроводник или его отсутствие трактуются как наличие логических сигналов 0 или 1. Устойчивые состояния, определяемые направлением намагниченности, позволяют использовать для хранения данных разнообразные магнитные материалы. Наличие или отсутствие заряда в конденсаторе также может быть положено в основу системы хранения. Отражение или рассеяние света от поверхности CD, DVD или Blu-ray-диска также позволяет хранить информацию.

Классификация типов памяти [ править | править код ]

Следует различать классификацию памяти и классификацию запоминающих устройств (ЗУ). Первая классифицирует память по функциональности, вторая же — по технической реализации. Здесь рассматривается первая — таким образом, в неё попадают как аппаратные виды памяти (реализуемые на ЗУ), так и структуры данных, реализуемые в большинстве случаев программно.

Доступные операции с данными [ править | править код ]

  • Память только для чтения (read-only memory, ROM)
  • Память для чтения/записи

Память на программируемых и перепрограммируемых ПЗУ (ППЗУ и ПППЗУ) не имеет общепринятого места в этой классификации. Её относят либо к подвиду памяти «только для чтения» [1] , либо выделяют в отдельный вид.

Читайте также:  Смарт часы для девочки 7 лет

Также предлагается относить память к тому или иному виду по характерной частоте её перезаписи на практике: к RAM относить виды, в которых информация часто меняется в процессе работы, а к ROM — предназначенные для хранения относительно неизменных данных [1] .

Метод доступа [ править | править код ]

  • Последовательный доступ (англ. sequential access memory, SAM ) — ячейки памяти выбираются (считываются) последовательно, одна за другой, в очерёдности их расположения. Вариант такой памяти — стековая память.
  • Произвольный доступ (англ. random access memory, RAM ) — вычислительное устройство может обратиться к произвольной ячейке памяти по любому адресу.

Организация хранения данных и алгоритмы доступа к ним [ править | править код ]

  • Адресуемая память — адресация осуществляется по местоположению данных.
  • Ассоциативная память (англ. associative memory, content-addressable memory, CAM ) — адресация осуществляется по содержанию данных, а не по их местоположению (память проверяет наличие ячейки с заданным содержимым, и если таковая(ые) присутствует(ют) возвращает её(их) адрес(а) или другие данные с ней(ними) ассоциированные).
  • Магазинная (стековая) память (англ. pushdown storage ) — реализация стека.
  • Матричная память (англ. matrix storage ) — ячейки памяти расположены так, что доступ к ним осуществляется по двум или более координатам.
  • Объектная память (англ. object storage ) — память, система управления которой ориентирована на хранение объектов. При этом каждый объект характеризуется типом и размером записи.
  • Семантическая память (англ. semantic storage ) — данные размещаются и списываются в соответствии с некоторой структурой понятийных признаков.

Назначение [ править | править код ]

  • Буферная память (англ. buffer storage ) — память, предназначенная для временного хранения данных при обмене ими между различными устройствами или программами.
  • Временная (промежуточная) память (англ. temporary (intermediate) storage ) — память для хранения промежуточных результатов обработки.
  • Кеш-память (англ. cache memory ) — часть архитектуры устройства или программного обеспечения, осуществляющая хранение часто используемых данных для предоставления их в более быстрый доступ, нежели кэшируемая память.
  • Корректирующая память (англ. patch memory ) — часть памяти ЭВМ, предназначенная для хранения адресов неисправных ячеек основной памяти. Также используются термины relocation table и remap table.
  • Управляющая память (англ. control storage ) — память, содержащая управляющие программы или микропрограммы. Обычно реализуется в виде ПЗУ.
  • Разделяемая память или память коллективного доступа (англ. shared memory, shared access memory ) — память, доступная одновременно нескольким пользователям, процессам или процессорам.

Организация адресного пространства [ править | править код ]

  • Реальная или физическая память (англ. real (physical) memory ) — память, способ адресации которой соответствует физическому расположению её данных;
  • Виртуальная память (англ. virtual memory ) — память, способ адресации которой не отражает физического расположения её данных;
  • Оверлейная память (англ. overlayable storage ) — память, в которой присутствует несколько областей с одинаковыми адресами, из которых в каждый момент доступна только одна.

Удалённость и доступность для процессора [ править | править код ]

  • Первичная память (сверхоперативная, СОЗУ) — доступна процессору без какого-либо обращения к внешним устройствам.
  • регистры процессора (процессорная или регистровая память) — регистры, расположенные непосредственно в АЛУ;
  • кэш процессора — кэш, используемый процессором для уменьшения среднего времени доступа к компьютерной памяти. Разделяется на несколько уровней, различающихся скоростью и объёмом (например, L1, L2, L3).
  • Вторичная память — доступна процессору путём прямой адресации через шину адреса (адресуемая память). Таким образом доступна оперативная память (память, предназначенная для хранения текущих данных и выполняемых программ) и порты ввода-вывода (специальные адреса, через обращение к которым реализовано взаимодействие с прочей аппаратурой).
  • Третичная память — доступна только путём нетривиальной последовательности действий. Сюда входят все виды внешней памяти — доступной через устройства ввода-вывода. Взаимодействие с третичной памятью ведётся по определённым правилам (протоколам) и требует присутствия в памяти соответствующих программ. Программы, обеспечивающие минимально необходимое взаимодействие, помещаются в ПЗУ, входящее во вторичную память (у PC-совместимых ПК — это ПЗУ BIOS).
  • Положение структур данных, расположенных в основной памяти, в этой классификации неоднозначно. Как правило, их вообще в неё не включают, выполняя классификацию с привязкой к традиционно используемым видам ЗУ [2] .

    Рассмотрим память компьютера, которая по отношению к процессору является внутренней. Внутренняя память компьютера – это место хранения информации, с которой он работает. Внутренняя память компьютера является временным рабочим пространством. Информация во внутренней памяти не сохраняется при выключении питания. Такая память в свою очередь также различается по типам:

    ОЗУ (оперативное запоминающие устройство)

    ПЗУ (постоянное запоминающие устройство)

    Оперативная память или ОЗУ

    Оперативная память (RAM Random Access Memory) – это массив кристаллических ячеек, способных хранить данные. Иными словами, в ОЗУ хранится информация, с которой ведется работа в данный момент времени.

    В ячейку можно записать только 0 или 1, т.е. 1 бит информации. Такая ячейка так и называется – «бит». Это наименьшая частица памяти компьютера и в связи с этим память имеет битовую структуру, которая определяет такое свойство оперативной памяти, как дискретность .

    Оперативную память в компьютере размещают на стандар­тных панельках, называемых модулями. Модули вставляются в соответс­твующие разъемы на материнской плате. Такая конструкция облегчает процесс замены или наращивания памяти. Количество модулей зависит от нужного вам объема ОЗУ. Важнейшей характеристикой модулей оперативной памяти является быстродействие, которое зависит от максимально возможной частоты операций записи или считывания информации из ячеек памяти. Современные модули памяти обеспечивают частоту до 800 МГц, а их информационная емкость достигает 2 Гб. Hynix разработала модули памяти DDR2-800 объемом в 2 Гб

    Читайте также:  Шифровальщик файлов блокировщик экрана

    Рис.1 Модуль памяти

    Мы знаем, что ОЗУ энергозависима, поэтому в целях сохранения, хранимой в ней информации необходимо подзаряжать ячейки этой памяти, этот процесс называется регенерация ОЗУ. Иными словами под регенерацией понимается восстановление заряда ячеек.

    Различают динамическую память (DRAM) и статическую память (SRAM).

    Память типа DRAM

    DRAM (Dynamic Random Access Memory, динамическая оперативная память с произвольным доступом) – тип памяти, содержимое которой может сохраняться только в том случае, если оно будет обновляться через короткие интервалы времени. Динамическому ОЗУ нужна регенерация. DRAM применяется для производства модулей оперативной памяти.

    Основное преимущество этого типа памяти состоит в том, что ее ячейки упакованы очень плотно, т.е. в небольшую микросхему можно упаковать много битов, а значит, на их основе можно построить память большей емкости. Ячейки памяти в микросхеме DRAM – это крошечные конденсаторы, которые удерживают заряды.

    Память типа sram

    SRAM (Static RAM, статическая память) – после записи данных в ячейки статической памяти они могут сохранять свое значение сколько угодно (в отличие от динамической памяти). SRAM имеет более высокое быстродействие, чем динамическая оперативная память, и может работать на той же частоте, что и современные процессоры. Время доступа SRAM не более 2 нс, это означает, что такая память может работать синхронно с процессорами на частоте 500 МГц или выше. Все это определило использование ее в качестве буферной кэш-памяти.

    Подведём итоги сравнения оперативной памяти:

    малое число элементов на одну ячейку, откуда высокая плотность упаковки, большой объем памяти на одном кристалле;

    малое потребление мощности.

    необходимость периодического перезаряда элементов памяти, а это: уменьшает быстродействие, усложняет схемы обслуживания памяти;

    при отсутствии питания стирается вся информация.

    в связи с дороговизной память типа SRAM используется, в основном только как КЭШ L1 и L2 1

    маленькая плотность упаковки

    Постоянная память или ПЗУ

    Первую свою команду процессор находит в памяти, которая в отличие от магнитных и оптических дисков является внутренней и, в отличие от ОЗУ, энергонезависимой, т.е. хранит информацию постоянно, даже после выключения компьютера.

    Такая память действительно существует и называется ПЗУ (ROM Read Only Memory, память только для чтения) – постоянное запоминающее устройство. Микросхема ПЗУ устанавливается так, что ее память занимает нужные адреса. Поэтому процессор, когда начинает свою работу, в постоянную память, заготовленную для него заранее. Из ПЗУ можно только читать информацию.

    В постоянной памяти хранятся программы, необходимые для запуска компьютера и «зашитые» в нее при изготовлении. Основное назначение этих программ состоит в том, чтобы проверить состав и работоспособной компьютерной системы сразу после включения.

    Итак, в ПЗУ хранится информации об устройствах компьютера, т.е. параметры и характеристики монитора, жесткого диска, мыши и т.д. для того, чтобы при включении компьютера, прежде чем начать работу, можно было убедиться, что все они работоспособны.

    Необходима такая память, в которую можно было бы записывать информацию (в отличие от ПЗУ) и которая была бы энергонезависимой (отличие от ОЗУ). И такая память действительно существует и по технологии изготовления называется она CMOS.

    CMOS – это память с невысоким быстродействием и минимальным энергопотреблением от батарейки, расположенной на материнской плате. Заряда батарейки хватает на несколько лет. CMOS используется для хранения информации о составе оборудования компьютера, а также о режимах его работы. Наличие этого вида памяти позволяет отслеживать время и календарь, даже если компьютер выключен. Таким образом, программы записанные в ПЗУ, считывают информацию о составе оборудования компьютера из микросхемы CMOS, после чего выполняют тестирование устройств ПК.

    Cash (запас) обозначает быстродействующую буферную память между процессором и основной памятью. Кэш служит для частичной компенсации разницы в скорости процессора и основной памяти – туда попадают наиболее часто используемые данные. Когда процессор первый раз обращается к ячейке памяти, ее содержимое параллельно копируется в кэш, и в случае повторного обращения в скором времени может быть с гораздо большей скоростью выбрано из кэша [1, С.39-40].

    Она увеличивает производительность, поскольку хранит наиболее часто используемые данные и команды «ближе» к процессору, откуда их можно быстрее получить. Кэш-память напрямую влияет на скорость вычислений и помогает процессору работать с более равномерной загрузкой.

    Новинки имеют кэш-память емкостью до 32 Мб

    Еще один вид памяти – это видеопамять, то есть память, используемая для хранения изображения, выводимого на экран монитора. Эта память обычно входит в состав видеоконтроллера – электронной схемы, управляющей выводом изображения на экран. Он обычно выполняется в виде специальной платы, вставляемой в разъем системной шины компьютера, но на многих компьютерах он входит в состав системной (материнской) платы. Видеоконтроллер получает от микропроцессора компьютера команды по формированию изображения, конструирует это изображение в своей служебной памяти – видеопамяти, и одновременно преобразует содержимое видеопамяти в сигнал, подаваемый на монитор-видеосигнал.

    В видеопамяти размещаются данные, отображаемые адаптером на экране дисплея. Видеопамять обычно имеет объем 256 Кбайт, на некоторых моделях видеоадаптера объем видеопамяти может быть увеличен до 512 Мбайт.

    Комментировать
    0 просмотров
    Комментариев нет, будьте первым кто его оставит

    Это интересно
    Adblock detector