No Image

Электронная промышленность россии сегодня

СОДЕРЖАНИЕ
0 просмотров
22 января 2020

На 2018 год СМИ со ссылкой на интервью министра промышленности и торговли Дениса Мантурова сообщали, что в России производится микроэлектроника "по типоразмеру до 65 нанометров". [1] [2]

Содержание

Предприятия [ править | править код ]

Холдинг «Росэлектроника» консолидирует большинство крупных российских предприятий и научно-исследовательских институтов в области электронной промышленности. Холдинг основан в 1997 году, на момент создания в него входило 33 предприятия электронной промышленности [3] . В настоящее время в состав холдинга входит 123 предприятия, которые специализируются на разработке и производстве изделий электронной техники, электронных материалов и оборудования для их изготовления, полупроводниковых приборов и технических средств связи [4] .
В частности, в состав холдинга входят такие предприятия, как "Ангстрем", "Элма", "Светлана", завод «Метеор», АО "Московский электроламповый завод", НИИ газоразрядных приборов «Плазма», НПП «Исток», НПП «Пульсар», АО «НИИЭТ» и др. [5]

История [ править | править код ]

Первый универсальный программируемый компьютер в континентальной Европе был создан командой учёных под руководством С. А. Лебедева из Киевского института электротехники СССР. ЭВМ МЭСМ (Малая электронная счётная машина) заработала в 1950 году. Она содержала около 6000 электровакуумных ламп и потребляла 15 кВт. Машина могла выполнять около 3000 операций в секунду.

Первой советской серийной ЭВМ стала «Стрела», производимая с 1953 на Московском заводе счётно-аналитических машин. «Стрела» относится к классу больших универсальных ЭВМ с трёхадресной системой команд. ЭВМ имела быстродействие 2-3 тыс. операций в секунду. В качестве внешней памяти использовались два накопителя на магнитной ленте емкостью 200 тыс. слов, объём оперативной памяти — 2048 ячеек по 43 разряда. Машина состояла из 6200 ламп, 60 000 полупроводниковых диодов и потребляла 150 кВт энергии.

«Сетунь» была первой ЭВМ на основе троичной логики, разработана в 1958 году в Советском Союзе.

Первыми советскими серийными полупроводниковыми ЭВМ стали «Весна» и «Снег», выпускаемые с 1964 по 1972 год. Пиковая производительность ЭВМ «Снег» составила 300 000 операций в секунду. Машины изготавливались на основе транзисторов с тактовой частотой 5 МГц. Всего было выпущено 39 ЭВМ.

Наилучшей советской ЭВМ II-го поколения считается БЭСМ-6, созданная в 1966 году. В архитектуре БЭСМ-6 впервые был широко использован принцип совмещения выполнения команд (до 14 одноадресных машинных команд могли находиться на разных стадиях выполнения). Механизмы прерывания, защиты памяти и другие новаторские решения позволили использовать БЭСМ-6 в мультипрограммном режиме и режиме разделения времени. ЭВМ имела 128 КБ оперативной памяти на ферритовых сердечниках и внешнюю память на магнитных барабанах и ленте. БЭСМ-6 работала с тактовой частотой 10 МГц и рекордной для того времени производительностью — около 1 млн операций в секунду. Всего было выпущено 355 ЭВМ.

В 1971 году появились первые машины серии ЕС ЭВМ.

Создание ЭВМ для боевых систем ПРО и ПВО [ править | править код ]

Успешные испытания системы А дали значительный импульс развитию вычислительной техники. Начинается разработка ЭВМ для противоракетной обороны Москвы, Бурцев становится заместителем директора ИТМиВТ Лебедева и основным исполнителем по военным заказам. В 1961 — 1967 гг. для системы ПРО А-35 создается серия высокопроизводительных двухпроцессорных ЭВМ 5Э92 (5Э92б полупроводниковый вариант, 5Э51 серийная модификация) и вычислительная сеть на их базе, состоящая из 12 машин с полным аппаратным контролем и автоматическим резервированием. Кроме системы ПРО, 5Э51 используется в Центре контроля космического пространства (ЦККП) и многих информационных и научных центрах военного профиля [10] . В 1972 году за эту работу группа ученых во главе с В.С. Бурцевым удоставивается Государственной премии СССР [6] .

С 1968 года Всеволод Бурцев руководит разработкой вычислительных средств для будущего ЗРК С-300. К 1972–1974 г. создана трехпроцессорная модульная ЭВМ 5Э26 и, позднее, её модификации 5Э261, 5Э262, 5Э265 и 5Э266, которые сменил пятипроцессорный ЦВК 40У6 (1988 год) [11] .

В 1970 году, в рамках создания второго поколения ПРО конструктора Г.В. Кисунько, в ИТМиВТ началась разработка перспективного вычислительного комплекса «Эльбрус» с производительностью 100 млн. оп./с., главным конструктором проекта становится В. С. Бурцев (В 1973 году он сменяет, ушедшего по состоянию здоровья, С.А. Лебедева на посту директора ИТМиВТ). Высокую производительность планируется получить используя большой опыт института в области многопроцессорных параллельных архитектур (ранее это использовалось в основном для достижения высокого уровня надёжности при относительно невысоком качестве комплектующих отечественного минрадиопрома). Первый «Эльбрус-1» (1978 год) из за устаревшей элементарной базы имел невысокую производительность (15 млн. оп./с.), более поздняя модификация «Эльбрус-2» (1985 год) в 10-процессорном исполнении достигла 125 млн. оп./с. [10] и стала первым промышленным компьютером с суперскалярной архитектурой и самым мощным суперкомпьютером СССР, «Эльбрус-2» эксплуатировались в ядерных НИИ ЦУПе и в системе ПРО А-135, за его разработку В. С. Бурцев и ряд других специалистов были удостоены Государственной премии [12] .

Работы в области перспективных многопроцессорных ЭВМ [ править | править код ]

В рамках дальнейшей модернизации суперЭВМ под руководством Бурцева разрабатывается векторный процессор с быстродействием 200 – 300 млн оп./с, введение которого в МВК «Эльбрус» могло поднять производительность до 1 млрд оп/с, однако в 1985 году, после 35 лет работы в ИТМиВТ, обстоятельства заставляют его перейти на должность заместителя директора (с 1992 г. директор) Вычислительного центра коллективного пользования (ВЦКП) АН СССР. На новой должности Бурцев продолжает развивать идеи высокоскоростных параллельных вычислений в рамках проекта "Оптической сверхвысокопроизводительной машины" (ОСВМ) Академии наук 13 , разрабатывая структуру суперЭВМ на «не Фон-Неймановском принципе» с эффективным распараллеливанием вычислительного процесса на аппаратном уровне 10 .

После распада СССР Российская Академия наук сворачивает фронт работ над суперЭВМ и ВЦКП закрывается. В 1995 году Бурцев самостоятельно организует Институт высокопроизводительных вычислительных систем (ИВВС) в котором продолжает работу, однако из за отсутствия интереса к данной теме со стороны Академии наук и отсутствия финансирования практического продолжения направление не получает.

В 1990-х годах электронная промышленность находилась в упадке из-за острого финансового и политического кризиса, а также отсутствия заказов на разработку и создание новых изделий. Военные заказы к 2007 г. уменьшились в 6-8 раз.

«Стратегия развития электронной промышленности РФ до 2025 г.» (утверждена в августе 2007 министром промышленности и энергетики РФ Виктором Христенко) — констатируется утрата на 40-50 % технологий производства электронной компонентной базы (ЭКБ), разработанной в СССР 1970-1980-х; наблюдается прогрессирующее технологическое отставание РФ в области твердотельной СВЧ-электроники (снижается конкурентоспособность производимых в РФ вооружений — теперь их приходится на 70 % оснащать импортной электроникой; аналогичные проблемы возникают и в космической отрасли). К 2007 г. доля РФ на мировом рынке ЭКБ составляла всего 0,23 %; на внутреннем рынке ЭКБ промышленность РФ обеспечивает только 37,5 % спроса.

В 2008 году была запущена Федеральная целевая программа “Развитие электронной компонентной базы и радиоэлектроники” на 2008-2015 годы [6] .

В 2013 году в Зеленограде был открыт Центр проектирования, каталогизации и производства фотошаблонов (ЦФШ) для изготовления интегральных схем (ИС), создававшийся в два этапа с 2006 года. Центр позволяет проектировать и изготавливать фотошаблоны различных типов и является единственным предприятием по производству фотошаблонов в РФ [7] [8] .

Микроэлектроника [ править | править код ]

В 2008 году темпы роста микроэлектроники в России были около 25 %, а в 2009 году — около 15 %, что превышало темпы роста других отраслей российской промышленности. [10] В феврале 2010 года замминистра промышленности и торговли России Юрий Борисов заявил, что реализация стратегии правительства России в области микроэлектроники сократила технологическое отставание российских производителей от западных до 5 лет (до 2007 года это отставание оценивалось в 20-25 лет) [10] .

Российская группа предприятий «Ангстрем» и компания «Микрон» являются одними из крупнейших производителей интегральных схем в Восточной Европе [11] . Около 20 % продукции «Микрона» экспортируется [12] .

В октябре 2009 года была учреждена компания «СИТРОНИКС-Нано» для работы над проектом по созданию в России производства интегральных схем размером 90 нм [13] . «Ситроникс-нано» достраивает фабрику по выпуску таких микрочипов, которая должна начать работать в 2011 г. Такие чипы можно использовать для выпуска SIM-карт, цифровых телеприставок, приемников ГЛОНАСС и др. Стоимость проекта составит 16,5 млрд рублей [14] .

К концу 2010 года в России было начато производство чипов по технологии 90 нм, используемых, в частности, в мобильных телефонах российского производства [15] .

Существуют планы создания единого инновационного Центра для исследований и разработок, аналога «Кремниевой долины» в США [16] , характерной чертой которого станет большая плотность высокотехнологичных компаний. Место будущего центра должно быть определено в ближайшем будущем [17] . Помощник президента Аркадий Дворкович предостерег от сравнения будущего инновационного центра с известным центром компьютерных технологий в США. По его словам, «прямое сравнение здесь не подходит», «в будущем российском центре не будет такого фокуса на одной области, в частности, компьютерных технологиях» [18] .

Производство микропроцессоров [ править | править код ]

В советское время одним из самых востребованных из-за его непосредственной простоты и понятности стал задействованный в учебных целях МПК КР580 — набор микросхем, функциональный аналог набора микросхем Intel 82xx. Использовался в отечественных компьютерах, таких, как Радио 86РК, ЮТ-88, Микроша и т. д.

Разработкой микропроцессоров в России занимаются ЗАО «МЦСТ», НИИСИ РАН, АО «НИИЭТ» и ЗАО «ПКК Миландр». Также разработку специализированных микропроцессоров, ориентированных на создание нейронных систем и цифровую обработку сигналов, ведут НТЦ «Модуль» и ГУП НПЦ «ЭЛВИС». Ряд серий микропроцессоров также производит ОАО «Ангстрем».

НИИСИ РАН разрабатывает процессоры серии «Комдив» на основе архитектуры MIPS. Техпроцесс — 0,5 мкм, 0,3 мкм; КНИ.

  • КОМДИВ-32, 1890ВМ1Т, в том числе в варианте КОМДИВ32-С (5890ВЕ1Т), стойком к воздействию факторов космического пространства (ионизирующему излучению)
  • КОМДИВ-64, КОМДИВ64-СМП
  • Арифметический сопроцессор КОМДИВ128
Читайте также:  Стандартное соотношение сторон монитора

ЗАО ПКК Миландр разрабатывает 16-разрядный процессор цифровой обработки сигналов и 2-ядерный процессор:

  • 2011 год, 1967ВЦ1Т [19] — 16-разрядный процессор цифровой обработки сигналов, частота 50 МГц, КМОП 0,35 мкм
  • 2011 год, 1901ВЦ1Т — 2-ядерный процессор, DSP (100 МГц) и RISC (100 МГц), КМОП 0,18 мкм

НТЦ «Модуль» разработал и предлагает микропроцессоры семейства NeuroMatrix: [20]

  • 1998 год, 1879ВМ1 (NM6403) — высокопроизводительный специализированный микропроцессор цифровой обработки сигналов с векторно-конвейерной VLIW/SIMD архитектурой. Технология изготовления — КМОП 0,5 мкм, частота 40 МГц.
  • 2007 год, 1879ВМ2 (NM6404) — модификация 1879ВМ1 с увеличенной до 80 МГц тактовой частотой и 2Мбитным ОЗУ, размещённым на кристалле процессора. Технология изготовления — 0,25 мкм КМОП.
  • 2009 год, 1879ВМ4 (NM6405) — высокопроизводительный процессор цифровой обработки сигналов с векторно-конвейерной VLIW/SIMD архитектурой на базе запатентованного 64-разрядного процессорного ядра NeuroMatrix. Технология изготовления — 0,25 мкм КМОП, тактовая частота 150 МГц.
  • 2011 год, 1879ВМ5Я (NM6406) — высокопроизводительный процессор цифровой обработки сигналов с векторно-конвейерной VLIW/SIMD архитектурой на базе запатентованного 64-разрядного процессорного ядра NeuroMatrix. Технология изготовления — 90нм КМОП, тактовая частота — 300 МГц.
  • СБИС 1879ВМ3 — программируемый микроконтроллер с ЦАП и АЦП. Частота выборок — до 600 МГц (АЦП) и до 300 МГц (ЦАП). Максимальная тактовая частота — 150 МГц. [21]

ГУП НПЦ ЭЛВИС разрабатывает и производит микропроцессоры серии «Мультикор» [22] , отличительной особенностью которых является несимметричная многоядерность. При этом физически в одной микросхеме содержатся одно CPU RISC-ядро с архитектурой MIPS32, выполняющее функции центрального процессора системы, и одно или более ядер специализированного процессора-акселератора для цифровой обработки сигналов с плавающей/фиксированной точкой ELcore-xx (ELcore = Elvees’s core), основанного на «гарвардской» архитектуре. CPU-ядро является ведущим в конфигурации микросхемы и выполняет основную программу. Для CPU-ядра обеспечен доступ к ресурсам DSP-ядра, являющегося ведомым по отношению к CPU-ядру. CPU микросхемы поддерживает ядро ОС Linux 2.6.19 или ОС жесткого реального времени QNX 6.3 (Neutrino).

  • 2004 год, 1892ВМ3Т (MC-12) — однокристальная микропроцессорная система с двумя ядрами. Центральный процессор — MIPS32, сигнальный сопроцессор — SISD ядро ELcore-14. Технология изготовления — КМОП 250 нм, частота 80 МГц. Пиковая производительность 240 MFLOPs (32 бита).
  • 2004 год, 1892ВМ2Я (MC-24) — однокристальная микропроцессорная система с двумя ядрами. Центральный процессор — MIPS32, сигнальный сопроцессор — SIMD ядро ELcore-24. Технология изготовления — КМОП 250 нм, частота 80 МГц. Пиковая производительность 480 MFLOPs (32 бита).
  • 2006 год, 1892ВМ5Я (MC-0226) — однокристальная микропроцессорная система с тремя ядрами. Центральный процессор — MIPS32, 2 сигнальных сопроцессора — MIMD ядро ELcore-26. Технология изготовления — КМОП 250 нм, частота 100 МГц. Пиковая производительность 1200 MFLOPs (32 бита).
  • 2008 год, NVCom-01 («Навиком») — однокристальная микропроцессорная система с тремя ядрами. Центральный процессор — MIPS32, 2 сигнальных сопроцессора — MIMD DSP-кластер DELCore-30 (Dual ELVEES Core). Технология изготовления — КМОП 130 нм, частота 300 МГц. Пиковая производительность — 3600 MFLOPs (32 бита). Разработан в качестве телекоммуникационного микропроцессора, содержит встроенную функцию 48-канальной ГЛОНАСС/GPS-навигации.
  • 2012 год, 1892ВМ7Я (ранее был известен как MC-0428) — однокристальная микропроцессорная гетерогенная система с четырьмя ядрами. Новый центральный процессор — MIPS RISCore32F64 с интегрированным 32-/64-разрядным математическим акселератором и 2*16Кбайт (16К команды и 16К данные) кэш памятью первого уровня, 3 сигнальных сопроцессора — модернизированное MIMD-ядро ELcore. Технология изготовления — КМОП 130 нм, частота 300 МГц. Пиковая производительность 9600 MFLOPs (32 бита). Корпус BGA-756.
  • 2012 год, NVCom-02T («Навиком-02Т») — однокристальная микропроцессорная система с тремя гетерогенными ядрами. Ведущий процессор — RISCore32F64, сигнальные сопроцессоры — MIMD DSP-кластер DELCore-30М. Сигнальные сопроцессоры организованы в двухпроцессорный кластер, поддерживающий вычисления с плавающей и фиксированной точкой, и интегрированный с 48-и канальным коррелятором для ГЛОНАСС/GPS-навигации. Сигнальные ядра имеют ряд новых возможностей, в том числе аппаратные команды для обработки графики (IEEE-754), аппаратную реализацию кодирования/декодирования по Хаффману; расширены возможности использования внешних прерываний; организован доступ ядер DSP к внешнему адресному пространству, возможно отключение частоты только от CPU. Технология изготовления — КМОП 130 нм, частота 250 МГц. Пиковая производительность — 4,0 GFLOPs (32 бита). Имеет пониженную потребляемую мощность.

В качестве перспективной модели представляется микропроцессор под обозначением «Мультиком-02» (MCom-02), позиционируемый как мультимедийный сетевой многоядерный процессор.

ОАО «Multiclet» разрабатывает и производит на сторонних мощностях микропроцессоры по запатентованной ею мультиклеточной технологии.

  • 2012 год, MCp0411100101 — универсальный микропроцессор, ориентированный на задачи управления и цифровой обработки сигналов. Поддерживает аппаратные операции с плавающей запятой. Технология изготовления — КМОП 180 нм, частота 100 МГц. Пиковая производительность 2,4 GFLOPs (32 бита). Приёмка — ОТК 1,3 и 5.

ОАО «Ангстрем» производит (не разрабатывает) следующие серии микропроцессоров:

  • 1839 — 32-разрядный VAX-11/750-совместимый микропроцессорный комплект из 6 микросхем. Технология изготовления — КМОП, тактовая частота 10 МГц.
  • 1836ВМ3 — 16-разрядный LSI-11/23-совместимый микропроцессор. Программно совместим с PDP-11 фирмы DEC. Технология изготовления — КМОП, тактовая частота — 16 МГц.
  • 1806ВМ2 — 16-разрядный LSI/2-совместимый микропроцессор. Программно совместим с LCI-11 фирмы DEC. Технология изготовления — КМОП, тактовая частота — 5 МГц.
  • Л1876ВМ1 32-разрядный RISC-микропроцессор. Технология изготовления — КМОП, тактовая частота — 25 МГц.

Из собственных разработок Ангстрема можно отметить однокристальную 8-разрядную RISC микроЭВМ Тесей.

Компанией МЦСТ разработано и внедрено в производство семейство универсальных SPARC-совместимых RISC-микропроцессоров с проектными нормами 90, 130 и 350 нм и частотами от 150 до 1000 МГц (подробнее см. статью о серии — МЦСТ-R и о вычислительных комплексах на их основе «Эльбрус-90микро»). Также разработан VLIW-процессор «Эльбрус» с оригинальной архитектурой ELBRUS, используется в комплексах «Эльбрус-3М1»). Прошёл государственные испытания и рекомендован к производству новый процессор «Эльбрус-2С+», отличающийся от процессора «Эльбрус» тем, что содержит два ядра на архитектуре VLIW и четыре ядра DSP (Elcore-09). Основные потребители российских микропроцессоров — предприятия ВПК.

История развития процессоров МЦСТ:

  • 1998 год, SPARC-совместимый микропроцессор с технологическими нормами 500 нм и частотой 80 МГц.
  • 2001 год, МЦСТ-R150 — SPARC-совместимый микропроцессор с технологическими нормами 350 нм и тактовой частотой 150 МГц.
  • 2003 год, МЦСТ-R500 — SPARC-совместимый микропроцессор с технологическими нормами 130 нм и тактовой частотой 500 МГц.
  • 2004 год, «Эльбрус 2000» (E2K) — микропроцессор с технологическими нормами 130 нм и тактовой частотой 300 МГц. E2K имеет разработанную российскими учёными вариант архитектуры явного параллелизма, аналог VLIW/EPIC.
  • Январь 2005 года
  • Успешно завершены государственные испытания МЦСТ-R500. Этот микропроцессор явился базовым для пяти новых модификаций вычислительного комплекса «Эльбрус-90микро», успешно прошедших типовые испытания в конце 2004 года.
  • На базе МЦСТ-R500 в рамках проекта «Эльбрус-90микро» создан микропроцессорный модуль МВ/C, фактически являющийся одноплатной ЭВМ.
  • На базе ядра МЦСТ-R500 начата разработка двухпроцессорной системы на кристалле (СНК) МЦСТ-R500S. На кристалле будут также размещены все контроллеры, обеспечивающие её функционирование как самостоятельной ЭВМ. На базе СНК планируется создание семейств новых малогабаритных носимых вычислительных устройств — ноутбуков, наладонников, GPS-привязчиков и т. п.
  • Май 2005 года — получены первые образцы микропроцессора Эльбрус 2000.

Производство светодиодов [ править | править код ]

На протяжении некоторого времени крупнейшим сборщиком светодиодов в России и Восточной Европе являлась компания «Оптоган» [23] , созданная при поддержке ГК «Роснано». Производственные мощности компании расположены в Санкт-Петербурге. «Оптоган» занимается как производством светодиодов из иностранных компонентов, так и чипов и матриц, а также участвует во внедрении светодиодов для общего освещения; но производственные мощности были заморожены в конце 2012 года [24] .

Крупным предприятием по производству светодиодов и устройств на их основе также можно назвать завод Samsung Electronics в Калужской области. [ источник не указан 180 дней ]

В мае 2011 года госхолдинг «Российская электроника» объявил о планах создать в особой экономической зоне в Томской области завод полного цикла (кластер) по производству светодиодных светильников на базе научно-исследовательского института полупроводниковых приборов (НИИПП) [25] . Стоимость проекта оценивалась в 6,5 млрд рублей. В 2014 году шло проектирование корпуса светодиодного кластера, в этом же году было намерение закупить оборудование, в 2015 – строить корпус [26] (ранее ввод завода в строй ожидался в 2013 году [27] ), однако в связи с кризисом 2015 года планы не реализовались.

Принято считать, что “рашка лапотная” и не производит своей микроэлектроники. Однако это не так. На текущий момент можно считать российскими процессоры ]]> Эльбрус-8С ]]> и процессор ]]> Байкал Т1 ]]> . Однако, оба процессора выпускаются на Тайвани, а в России только проектирование. Пока что в России производить процессоры дорого.

А насколько процессоры стоит производить в России и зачем, ответит “ ]]> Информатик ]]> ”. Очень структурировано и профессионально рассказал о текущем состоянии микроэлектроники. Для желающих узнать более развернутые ответы, в тексте везде ссылки на все вопросы.

1. Можете рассказатьо своем опыте (текущая деятельность, степени, опыт).

Опыт деятельности – параллельное программирование, операционные системы, компиляторы, моделирование физических процессов,медицинская информатика, программная инженерия, проектирование и архитектурирование распределенных ИТ-систем, управление проектами, системная аналитика и консультирование, преподавание.
Много приятелей по alma mater (МФТИ) с экспертизой по микроэлектронике.

2. На текущий момент в россии организовано производство процессоров по какой технологии? 10 нм, 28 нм, 60 нм, 90 нм?

Информация открытая. Обзоры можно прочитать здесь:

Освоено промышленное производство 90 нм. Освоили 65 нм., но еще не готовы к массовому производству.

3. Что помешало закончить проекты по производству процессоров по технологии 60 нм?

Нестабильное и небольшое финансирование. Организационная и владельческая неразбериха. Не очень быстрая подготовка и обучение кадров у западных производителей различного вида оборудования производственных линий.

Читайте также:  Умные часы samsung gear s3 frontier обзор

4. Какие процессоры можно считать российскими?

Сейчас? Именно полностью «российские» микропроцессоры всех видов, начиная от самостоятельного производства сверхчистых пластин, масок, корпусов ? Названия таких вряд ли будут знакомы. Какие-нибудь FPGA 5576ХС4Т, 5576ХС3Т, ]]> КОМДИВ-32 ]]> (НИИСИ), ]]> ПЛИС 5576XC4T ]]> , ]]> 1890ВМ6Я и 1890ВМ7Я ]]> (НИИСИ), что-то из продукции белорусского (читай советского) «Интеграла» (по 800 нм), микропроцессоры и микроконтроллеры из ]]> списка Минобороны ]]> (перечень микросхем спецназначения МОП 44 001.01-21).

В 2015 г. Минпромторг разработал проект правительственного постановления, в котором описаны критерии интегральных микросхем российского производства, двух уровней. Первый подразумевает производство радиоэлектроники налоговыми резидентами РФ, более 50% которых принадлежит российскому государству или гражданам без двойного гражданства. У производителей должны быть права на конструкторскую документацию, и они не могут использовать готовые схемотехнические решения иностранного происхождения.

Второй уровень, с оговорками, допускал привлечение к производству компонент партнеров за пределами России. Наиболее жесткие требования к «национальной чистоте» микропроцессорной техники предъявляет ФСБ. Менее строги к критериям «Росатом», МВД.

Микропроцессоры типа ]]> Baikal-Т1 ]]> , серия «Эльбрусов» и пр. – проходят по второму уровню. «Эльбрус-8С» – не полностью «отечественные» российские микропроцессоры. В «Эльбрус-8С» – российский дизайн/архитектура. Производится эта архитектура на Тайване (TSMC).

Процессоры ]]> «Эльбрус-4С» ]]> (800 МГц, 65нм, ]]> ПК «Эльбрус-401» ]]> ) и «Эльбрус-2С+» сначала планировали производить на линиях «Микрон», но опять же, пока «выпекают» на фабриках «партнёров из Юго-Восточной Азии».

При производстве микропроцессоров «на стороне» еще неизвестно что туда дополнительно «заложат», в «подарок».

5. В случае. если ВСЕ страны объявят нам санкции и не будут поставлять нам процессоры Чем это грозит в краткосрочной перспективе / в долгосрочной перспективе

Так мы и так под постоянными санкциями. В США/ЕС/Японии постоянно и согласованно (из США) обновляются ограничения на поставки технологий производства микропроцессоров/микросхем другим странам.

Вряд ли соберутся запрещать продавать те микропроцессоры, что уже широко продаются. Бизнес все-таки, немалые доходы и реноме нейтральности в мире.

Хотя, бывают и исключения. При реализации проекта УЭК компании VISA и Mastercard ежегодно теряли бы примерно

$4 млрд. Из-за рубежа намекнули практически на ультиматум: или снимаете банковско-платежную составляющую проекта, или будет запущен очередной COCOM на технологии, особенно запрет на поставки выбранных для УЭК чипов карт, которые в РФ не производятся. В итоге ]]> Как Россия осталась без национальной системы платежных карт ]]> (2014).

Если вдруг будет запущена вторая и долгосрочная версия COCOM, придется «выкручиваться», по старой русской традиции. Может вместе с китайцами ? Может еще как-то ?

6. насколько Важно обладать технологиями уменьшения размера технологий в процессоре?

Более высокую скорость вычислений в большей степени обеспечивают более высокие тактовые частоты (ТЧ), больше, чем фактор миниатюризации элементов в микропроцессоре.

Но, более высокие ТЧ дают и более повышенное рассеяние тепла, что является одной из самых больших проблем в увеличении производительности.

Физический предел современных технологий кремниевой начинается примерно с 7 нм. Уменьшение размеров транзисторов до менее 10 нм (окомикроэлектроники ло 20 атомов кремния, см. в ]]> Наноэлектроника ]]> ) значительно обостряет проблемы удаления тепла из-за проблем с токовыми утечками, вызываемыми туннелированием-просачиванием («пассивные утечки»). Помимо возрастания количества многочисленных наводок, на высоких частотах отражение сигнала от конца более «коротких» линий уже само по себе создаёт значительную ]]> помеху ]]> .

Одно время в развитии была надежда на переход на архитектуры с реализацией троичной логики (включая и технологии хранения данных), но Intel тогда выносил всех конкурентов вперед ногами с «рынков» и ему было и так хорошо. А теперь уже «поезд ушел», и троичная система не эффективна для реализации на столь миниатюрных 2D-полупроводниках, где многое завязано на реализации транзисторов, на топологию микросхем, на переходные процессы в электрических цепях. Еще и накладывается существенная, промышленная ]]> проблема количества затрачиваемой электроэнергии ]]> на единицу вычислительного потока.

Так что – если и вкладываться в разработки, то уж двигаться сразу в области «новых» технологий элементной базы. Например, в оптоэлектронику (оптронику), где и ТЧ выше (3-4 порядка), и рассеяние тепла меньше и скорости прохождения сигналов выше (в

80 раз). А еще лучше – в реализацию миниатюрных устройств-3D-кристаллов, с реализацией в них вычислительных процессов на основе использования нелинейной электродинамики (т.н. ]]> Метафорический компьютинг ]]> ).

P.S. Нанотрубки, графен, и «квантовые компьютеры» – это пока «разводилово» конкурентов на отвлекающие исследования.

7. можете сказать, на ваш взгляд, насколько сейчас принципиально догонять производителей процессоров в технологии 10нм, или для военных не принципиально? Ну а для всех бытовых нужд можно покупать за границей?

Догонять, вкладываясь в разработки, именно современных “кремниевых” технологий – мало смысла. Технологии распространения плоских ЭМВ по цепям на кремнии – уже на физическом пределе, правило Мура уже не выполняется. Для «бытовых» нужд можно покупать и за границей, для военных целей – производить у себя, по меньшим нанометрам.

Доклад PITAC (The President’s Information Technology Advisory Committee – Вычислительные науки: обеспечение превосходства (конкурентоспособности) Америки

Я выписал два направления, в которые стоит целенаправленно вкладываться. Вкладываться нужно в режиме закрытых «шарашек», без всякой там открытости (никаких “мир, дружба жвачка”), без вклада в “мировую науку” (она обойдется), с максимальными формами промышленного шпионажа, вплоть до “без сантиментов”.

Для военных (а также и для атомщиков, и для промышленности, включая добывающие отрасли) — потребность в модельных вычислениях просто огромная (например, гиперзвук). Самый большой в стране парк вычислительных машин сейчас в Сарове (РосАтом) — обсчитывает модели физических процессов в различных реакторах, нейтронном материаловедении, прочностные модели и пр. и пр. Газпромгеофизика (Газпром, Роснефть) тоже арендует неслабые компьютерные мощности для вычислительной модельной поддержки различных методов георазведки и жизненного цикла месторождений.

P.S.: «Страна, которая хочет достичь превосходства в конкурентной борьбе, должна превосходить конкурентов в области вычислений»

]]> Доклад PITAC ]]> (The President’s Information Technology Advisory Committee – Вычислительные науки: обеспечение превосходства (конкурентоспособности) Америки

8. То есть, суперкомпьютеры на Ваш взгляд можно делать и на иностранных камнях? Или Вы разделили суперкомьютеры для военных и суперкомпьютеры для гражданских компаний (IMHO тот же Газпром / роснефть по опасней многих армий будет)

Суперкомпьютеры (все в России) и так сейчас реализованы сплошь на заграничных «камнях». Многие ]]> российские микропроцессоры – пока тоже не совсем «отечественные» ]]> .

Поставки процессоров в Саров (и др. военным стркутрам) контролируются американцами по заключенному межправительственному соглашению еще во времена Ельцина.

А считать надо, и много, чтобы поменьше экспериментальных вариантов в железе исполнять и побольше предварительно оценивать прогнозное поведение технологических решений (в динамике).

Напримеры:

9. Насколько для вертолетов и самолётов необходимы процессоры по технологии 10/28/60 нм?

Для бортовых систем самолетов/вертолетов/ракет вполне хватит и 120 нм (при

800MHz). Вопросы лишь к надежности и «военным параметрам» (см. ]]> требования ]]> МО). Для деятельности оборудования самолетов ДРЛО (типа «АВАКС») уже нужны поприличнее вычислительные мощности. Но тоже, вполне можно обойтись и 130, и 65 нм., с «небольшим» распараллеливанием.

10. Многие вопросы производительности можно решить на уровне алгоритма. Насколько необходимы малые микроны в военке? Насколько сложно процессоры для военных производить в РФ?

На алгоритмических уровнях решаются задачи более оптимальной организации потока вычислений. Выигрыш 5-15%.

Причем, нужно осознавать, что разработчики микропроцессоров не про все необходимые особенности работы микропроцессоров сообщают прикладным программистам. Поэтому, кодогенераторы Intel – самые эффективные среди других компиляторов.

Писать на ассемблерах на параллельных системах – и затратно (при высокой изменчивости программ), и полный геморрой с «ручной» балансировкой распараллеливания. Мы разработали систему автоматического распараллеливания (с автоматической же балансировкой) последовательных => в параллельные программы (на языках высокого уровня). Что вполне удовлетворительно решает вышеупомянутые проблемы.

В военке и ]]> космосе ]]> «малые микроны» иногда и не совсем полезны.

]]> Требования ]]> устойчивости в РЭБ, устойчивости к широкому спектру излучений ( ]]> радиации ]]> ) и потоков частиц – такихтребований сложнее достигать как раз при «малых микронах».

Микропроцессоры для военных производят в РФ, постоянно.

Насколько «сложно» ? Военным как раз полегче. У них меньше проблем по финансированию – производства, высококлассных кадров, закупок оборудования, организации ]]> НИР/ОКР ]]> , которые военные выполняют и своими силами, и заказывают на «гражданской стороне». И ГРУ им может иногда что-нибудь подкидывает интересного …

11. Какие продукты в области микроэлектроники Россия экспортирует?

Очень немного. В основном в составе комплектации военных систем (ПВО, РЭБ, авионика).

12. насколько критичен отъезд молодых специалистов за границу? просто специалистов (для развития микроэлектроники).

Эта более общая проблема – «утечки мозгов». Как описал выше, американцы держат на «кредитных крючках» своих молодых спецов, но организованно «пылесосят» другие страны (в т.ч. и ЕС) под разговоры о демократии и свободе выбора ПМЖ.
Нужно научиться как-то этому «пылесосенью» сопротивляться, ибо затратно же выходит – подготовят «бесплатно» молодых специалистов (включая и стажировки и обучение в ВУЗах/на практике) – и вдруг раз, и они уже в США/ЕС (иногда Израиле) и работают на их экономику и развитие.

Вводить исключительно платное и очень дорогое образование по отдельным специальностям и законодательные «ограничения» по образовательным кредитам, вплоть до выезда за границу ? Вряд ли поможет L

Принудительно направлять в научно-технические «шарашки» времен Сталина ? Сейчас вроде не открыто-военные времена …

Читайте также:  Чем отличается телевизор лед от олед

13. Расскажите историю процессора Pentium PRO

Все давно описано в открытой прессе.
Например, Советские корни процессора Intel Pentium
Пентковский умер в США в 2012, после того, как правительство РФ в 2011 выделило ему финансирование мегагрантовой лаборатории в МФТИ.

14. Какой нужный вопрос я не задал. но про это стоит сказать.

А туда ли мы идем в развитии собственной микроэлектроники ? Зачем опять повторять “чужое”, постоянно отставая ине имея первенства на мировом рынке ? Победитель ведь получает все, не так ли ?

15. Свой рынок есть возможность в первую очередь отвоевать, и Ю. Корейцы так и делали. В начале кто о них знал-никто и не брал, и не покупал. Лет 10 на своем рынке вкалывали, гигантскими, кратными по цене товару, пошлинами обрезав импорт.

Российский (не СССР+СЭВ) рынок микроэлектроники очень мал. Масштабы рынка влияют на доходность и цены технологий.
“Отвоевать” мировой не дадут. Известна история с критическими ]]> санкциями на Т-Платформы ]]> , ситуация с ]]> недавними санкциями на российские предприятия ]]> , которые из-за них не могут экспортировать продукцию в страны,присоединившиеся к санкциям, а также закупать у этих стран технологии и оборудование.
Также, производственная база мировой микроэлектроники весьма обширна. Надорвешься в одиночку производить весь ]]> обширный спектр комплектующих микроэлектроники ]]> , при этом не отставая в НИОКР по технологиям.

Мировой рынок микроэлектроники самого начала его развития был открыт Южной Корее (подконтрольны США). Также не было запретов на импорт технологий, также поступали ]]> крупные прямые зарубежные инвестиции ]]> .
Только в последнее время немного “по-прижимали” Samsung (и ]]> Китай ]]> , и в ]]> США ]]> ).

16. Когда Китай и Корея пришли когда все рынки были заполнены. Мы почему так не можем?

Только вот и микроэлектронные отрасли массовых производств в них переводили. А потом и компетенции подтянулись. И санкций никогда не было. В отличие от СОСОМ, поправки Джексона-Вейника.

17. Редкоземов в России полно и они не нужны особо.

Производство редкоземов рухнуло со времен СССР. Восстановить и развить такую отрасль — недешево. Очень недешево, при недостатке средств на многое другое.

18. Почему бы не отсечь от прибылей конкурентов, не питать их своими заказами

Российские заказы – достаточно малы в мировом рынке. Зачем играть в украинскую игру — “назло уши отморожу” ?

19. Почему не развивают ключевые отрасли, связанные с авиапромом? На одной военке далеко не уедешь.

]]> МС-21 ]]> и ]]> Суперджет ]]> производятся не только на отечественных технологиях. Авионика, двигатели, – весьма существенные компоненты, производимые за рубежом. В возрождение гражданского авиапрома (НИОКР, модернизация производства) – уже вложили огромные средства. И пока еще не видно – когда и как будет происходить возврат инвестиций, планы производства и продаж не сбываются. Китай тоже вступил в конкурентную борьбу в мировом авиапроме, и свой рынок будет защищать.

20. В СССР так и было, полный цикл, и никто не порвался и не оголодал. Почему в РФ не так?

]]> СССР+СЭВ занимали в 1975 ]]> примерно треть мирового рынка промпроизводства. Была автаркическая самодостаточная экономика стран социалистической системы, полные циклы многих (но не всех!) технологичных отраслей.

Сейчас этого нет. ЕвразЭС – это около 7-8% мирового рынка, открытость к перемещению кадров, встроенность в мировые цепочки разделения труда и технологий.

В общем, есть благородные “благие намерения”, и есть трезвые оценки текущей обстановки. Как говорили умные предшественники:

«Есть логика намерений и логика обстоятельств, и логика обстоятельств сильнее логики намерений» ((С) И.В.Сталин)

О проекте

PUBLIC TALK: Юрий Борисов, Заместитель Председателя Правительства РФ


Дискуссионная сессия «Кадры в электронной промышленности»

Пленарная дискуссия

Конференция пройдет с участием федеральных чиновников и топ-менеджеров отраслевых компаний.
Ключевой спикер – Юрий Борисов, Заместитель Председателя Правительства РФ.

Последние тридцать лет микроэлектроника – одна из самых передовых и наукоемких отраслей – в нашей стране фактически была сосредоточена в руках частного бизнеса. Но, к сожалению, частные акционеры просто не смогли удержать нужные темпы развития. Как результат – многократное отставание не только от Запада и Китая, но и от Малайзии, где в развитие отрасли государством инвестируются десятки миллиардов долларов.

Сейчас, когда основные активы отрасли снова перешли под контроль государства, ситуация начала меняться. До конца года будет принята государственная стратегия развития микро- и радиоэлектроники в России, а это означает, что главным инвестором становится государство.

«Микроэлектроника – это, безусловно, системообразующая отрасль. Россия за последние десятилетия существенно отстала не только от западных стран и Китая, которые инвестировали в отрасль ежегодно десятки миллиардов долларов, но и от Малайзии (за последние 15 лет инвестировано $27 млрд). Для сравнения: наша страна совокупно за восемь лет (2011 – 2018 годы) инвестировала в микроэлектронику порядка 81 млрд руб. (примерно $1,22 млрд). Однако ситуация постепенно выправляется. Производственные активы, которые не смогли развиваться в частных руках, перешли под контроль государства. И государство будет в них инвестировать».
Юрий Борисов, Заместитель Председателя Правительства РФ.

Задачи конференции – вынести в публичное поле актуальные вопросы, связанные с развитием и производством электроники в России, обсудить перспективы российского продукта на внутреннем и внешних рынках, меры господдержки, обменяться опытом и идеями по повышению эффективности ведения бизнеса.

В фокусе обсуждения

Аудитория конференции

Спикеры пленарной дискуссии

Юрий Борисов, заместитель председателя Правительства РФ

Азер Талыбов, заместитель министра Минэкономразвития России

Алексей Соколов, заместитель министра Минкомсвязи России

Модератор сессии Василий Шпак, директор департамента радиоэлектронной промышленности Минпромторга России

Петр Фрадков, председатель «Промсвязьбанка»

Олег Бочаров, заместитель министра Минпромторга России

Павел Сорокин, заместитель министра Минэнерго России

Сергей Сахненко, индустриальный директор радиоэлектронного комплекса ГК «Ростех»

Юрий Борисов, заместитель председателя Правительства РФ и Олег Бочаров, заместитель министра Минпромторга России

Александр Сауров, директор ИНМЭ РАН

Открытое интервью с Юрием Борисовым, заместителем председателя Правительства РФ

Юрий Борисов, заместитель председателя Правительства РФ

Илья Булавинов, главный редактор, газета «Ведомости»

Подписание соглашения о разработке решений на базе открытых стандартов связи.

Подписание соглашения о создании Консорциума отраслевого сообщества в области программноаппаратной части искусственного интеллекта

Подписание соглашения о совместной деятельности в сфере развития рынка российского электронного оборудования.

Закрытый круглый стол «Меры поддержки отрасли»

Участники круглого стола

Выступление участника на закрытом круглом столе

Сергей Куликов, первый заместитель председателя коллегии Военно-промышленной комиссии РФ – модератор сессии «Кадры в электронной промышленности»

Вадим Медведев, директор департамента инноваций и перспективных исследований Минобрнауки России

Наталья Транковская, заместитель генерального директора по организационному развитию «Российской электроники»

Константин Шадрин, директор центра цифрового развития Роскосмоса и Виталий Афонькин руководитель образовательной программы по мироэлектронике благотворительного фонда «Система»

Олег Кузнецов, генеральный директор, сооснователь Talent Portfolio

Оксана Кухарчук, HR-директор «Элемент»

Валерия Заболотная, ректор корпоративного университета «Сбербанка»

Общение в кулуарах

Программа

10 декабря 2019

Модератор
Василий Шпак, директор департамента радиоэлектронной промышленности, Минпромторг России

В фокусе обсуждения

  • Стратегия развития микро- и радиоэлектроники: показатели и ожидаемые результаты.
  • Есть ли у России потенциал в конкуренции с мировыми «монстрами»?
  • Электроника – основа безопасности и суверенитета страны.
  • Где развиваться отечественной микро- и радиоэлектронике? Где применять разработки на территории России?
  • Какие меры поддержки планируются для предприятий отрасли?

Спикеры
Юрий Борисов, заместитель председателя, Правительство РФ
Олег Бочаров, заместитель министра, Минпромторг России
Сергей Сахненко, индустриальный директор радиоэлектронного комплекса, ГК «Ростех»
Александр Сауров, директор, ИНМЭ РАН
Алексей Соколов, заместитель министра, Минкомсвязь России
Павел Сорокин, заместитель министра, Минэнерго России
Азер Талыбов, заместитель министра, Минэкономразвития России
Петр Фрадков, председатель, «Промсвязьбанк»

Спикеры первого ряда
Илья Иванцов, генеральный директор, «Элемент»
Андрей Григорьев, генеральный директор, Фонд перспективных исследований
Андрей Клепач, главный экономист, ВЭБ.РФ
Александр Ким, генеральный директор, МЦСТ
Андрей Манойло, первый заместитель директора, Фонд развития промышленности
Алексей Рахманов, президент, ОСК
Юрий Удальцов, заместитель председателя правления, Роснано
Денис Фролов, генеральный директор, «Русбитех»
Гульнара Хасьянова, генеральный директор, «Микрон»
Андрей Чеглаков, председатель совета директоров, «Новые облачные технологии»

Ведущий
Илья Булавинов, главный редактор, газета «Ведомости»

Открытый разговор с Юрием Борисовым, заместителем председателя Правительства РФ

Модератор
Сергей Куликов, первый заместитель председателя коллегии, Военно-промышленная комиссия РФ

В фокусе обсуждения

  • Индекс привлекательности отрасли электроники в России.
  • Таргетированность подготовки кадров для отрасли. Насколько ориентирована базовая система образования? Как помогают корпоративные университеты?
  • Являются ли кадры капиталом?
  • Финансовые и нефинансовые стимулы для корпораций вкладываться в образование кадров в России.
  • Образование и наука: где и как готовить специалистов, чтобы обеспечить развитие отрасли?

Спикеры
Виталий Афонькин, руководитель образовательной программы по мироэлектронике, Благотворительный фонд «Система»
Олег Бочаров, заместитель министра, Минпромторг России
Олег Кузнецов, генеральный директор, сооснователь, Talent Portfolio
Оксана Кухарчук, HR-директор, «Элемент»
Вадим Медведев, директор департамента инноваций и перспективных исследований, Минобрнауки России
Наталья Транковская, заместитель генерального директора по организационному развитию, «Российская электроника»
Константин Шадрин, директор центра цифрового развития, Роскосмос

Спикеры первого ряда
Эдуард Бобрицкий, директор департамента управления персоналом, ОСК
Сергей Гаврилов, проректор, МИЭТ
Юлия Еленева, проректор, МГТУ «Станкин»
Валерия Заболотная, ректор, корпоративный университет «Сбербанка»
Алексей Пономарев, вице-президент, Сколтех
Елена Романова, генеральный директор, корпоративная академия «Ростеха»
Андрей Рудской, ректор, Санкт-Петербургский политехнический университет Петра Великого (СПбПУ)
Игорь Суперекин, заместитель управляющего директора, Центр компетенций по кадрам для цифровой экономики
Алена Фомина, генеральный директор, ЦНИИ «Электроника»
Любава Шепелева, директор по персоналу, ОАК

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
Adblock detector