No Image

Электронно вычислительные машины появились в

СОДЕРЖАНИЕ
0 просмотров
22 января 2020

Электро́нно-вычисли́тельная маши́на (сокращённо ЭВМ) — комплекс технических, аппаратных и программных средств, предназначенных для автоматической обработки информации, вычислений, автоматического управления. При этом основные функциональные элементы (логические, запоминающие, индикационные и др.) выполнены на электронных элементах [1] .

Задолго до появления ЭВМ существовали другие виды вычислительных машин.

Содержание

Особенности терминологии [ править | править код ]

Понятие «электронно-вычислительная машина» следует отличать от более широкого понятия «вычислительная машина» (компьютер); [ источник не указан 709 дней ] ЭВМ является одним из способов воплощения вычислителя. ЭВМ подразумевает использование электронных компонентов в качестве её функциональных узлов, однако вычислитель может быть устроен и на других принципах — вычисления могут быть произведены механическим, биологическим, оптическим, квантовым и другими способами, работая за счёт перемещения механических частей, движения электронов, фотонов или за счёт других физических явлений. Кроме того, по типу функционирования вычислительная машина может быть аналоговой, цифровой и комбинированной (аналого-цифровой). [ источник не указан 709 дней ]

В настоящее время термин «ЭВМ», как относящийся больше к вопросам конкретного физического воплощения вычислителя, почти вытеснен из бытового употребления и в основном используется инженерами цифровой электроники, как правовой термин в юридических документах, а также в историческом смысле — для обозначения вычислительной техники 1940—1980-х годов и больших вычислительных устройств, в отличие от персональных.

Во времена широкого распространения аналоговых вычислительных машин, что тоже были, в своём подавляющем большинстве, электронными, во избежание недоразумений использовалось название «цифровая электронная вычислительная машина» (ЦЭВМ) или «счётная электронная вычислительная машина» (СЭВМ; для подчеркивания того, что это устройство осуществляет непосредственно вычисления результата, в то время как аналоговая машина по сути осуществляет процесс физического моделирования с получением результата измерением).

История создания ЭВМ [ править | править код ]

  • Первые гражданские ЭВМ Z1 и Z2 были созданы в конце 30-х годов в Германии.
  • 1941 год — Конрад Цузе создал вычислительную машину Z3, которая имела все свойства современного компьютера.
  • 1942 год — в Университете штата АйоваДжон Атанасов и его аспирантКлиффорд Берри создали (а точнее — разработали и начали монтировать) первую в США электронную цифровую вычислительную машину. Хотя эта машина так и не была завершена в связи с уходом Атанасова на военную службу, она, как пишут историки, оказала большое влияние на Джона Мокли, который, спустя четыре года, создал первую ЭВМ ЭНИАК.
  • В начале 1943 года успешные испытания прошла первая американская вычислительная машина Марк I, предназначенная для выполнения сложных баллистических расчётов для ВМС США.
  • В конце 1943 года заработала английская вычислительная машина специального назначения «Колосс». Машина работала над расшифровкой секретных кодов Третьего Рейха.
  • В 1944 годуКонрад Цузе разработал ещё более быструю вычислительную машину — Z4.
  • 1946 год стал годом создания первой американской гражданской универсальной электронной цифровой вычислительной машины ЭНИАК.
  • В 1950 году в Москве под руководством академика И.С.Брука была создана первая советская ЭВМ М-1, являющаяся первым компьютером в континентальной Европе.
  • С 1962 года ЭВМ применяются на космических кораблях Союз и Л-1 (облёт Луны).
  • 1967 стал годом, посвящённым формальным методам проектирования электронных вычислительных машин под руководством Глушкова.
  • 30 октября 1967 года в СССР произведена первая в мире полностью автоматическая стыковка двух космических аппаратов (беспилотных кораблей «Союз» под названиями «Космос-186» и «Космос-188» [2]
  • В 1969 году ЭВМ ракеты Н-1 обрабатывал данные с более чем с 13 тысяч датчиков ракеты.

Основные виды ЭВМ [ править | править код ]

По размеру аппаратной части могут быть выделены различные классы ЭВМ. [3]

В последние десятилетия человечество вступило в компьютерный век. Умные и мощные компьютеры, базируясь на принципах математических действий, работают с информацией, руководят деятельностью отдельных станков и целых заводов, контролируют качество продуктов и различных изделий. В наше время компьютерная техника – это основа развития человеческой цивилизации. На пути к такому положению пришлось пройти короткий, но весьма бурный путь. И долгое время назывались эти машины не компьютерами, а вычислительными машинами (ЭВМ).

Классификация ЭВМ

По общей классификации ЭВМ распределяются на целый ряд поколений. Определяющими свойствами при отнесении устройств к конкретному поколению являются их отдельные структуры и модификации, такие требования к электронно-вычислительным машинам, как быстродействие, объем памяти, методики управления и способы переработки данных.

Разумеется, распределение ЭВМ будет в любом случае условным – существует большое число машин, которые по некоторым признакам считаются моделями одного поколения, а по другим – принадлежат к совершенно иному.

В итоге эти аппараты возможно причислить к несовпадающим этапам формирования моделей электронно-вычислительного типа.

В любом случае, совершенствование ЭВМ идет в рамках ряда этапов. И поколение ЭВМ каждого этапа обладает существенными отличиями друг от друга по элементным и техническим базам, определенному обеспечению конкретного математического типа.

Первое поколение ЭВМ

Поколение 1 вычислительных машин развивалось в первые послевоенные годы. Создавались не очень мощные электронно-вычислительные машины, базирующиеся на лампах электронного типа (таких же, как и во всех телевизорах моделей тех лет). В какой-то мере это был этап становления подобной техники.

Первые вычислительные машины считались экспериментальными типами аппаратов, которые формировались для анализа существующих и новых концепций (в разных науках и в некоторых сложных производствах). Объем и масса компьютерных машин, которые были довольно-таки велики, нередко требовали очень больших помещений. Сейчас это кажется сказкой давно прошедших и даже не совсем реальных лет.

Введение данных в машины первого поколения шло способом загрузки перфокарт, а программное руководство последовательностями решений функций проводилось, к примеру, в ENIAC – способом ввода штекеров и форм наборной сферы.

Несмотря на то, что такой способ программирования оттягивал большой объем времени для того, чтобы подготовить агрегат, для подключений на наборных полях блоков машин он предоставлял все возможности для демонстрации математических «способностей» ENIAC’а, и с существенной выгодой обладал отличиями от способа программной перфоленты, которая подходит для аппаратов релейного типа.

Читайте также:  Тест защита операционной системы

Принцип «мышления»

Сотрудники, которые работали на первых вычислительных машинах, не отрывались, были возле машин постоянно и проводили наблюдение за эффективностью работы имеющихся электронных ламп. Но стоило только выйти из строя хотя бы одной лампе, ENIAC мгновенно поднимался, все в спешке проводили поиск сломавшейся лампы.

Ведущей причиной (хотя и приблизительной) весьма нередкой замены ламп была следующая: нагревание и сияние ламп притягивали насекомых, они залетали во внутренний объем аппарата и «помогали» созданию короткого электрического замыкания. То есть первое поколение этих машин было очень уязвимым к внешним воздействиям.

Если представить, что эти предположения могли быть правдой, то понятие «жучки» («баги»), под которым разумеются ошибки и промахи в программном и аппаратном компьютерном оборудовании, получает уже совсем иное значение.

Ну, а если лампы машины были в рабочем состоянии, обслуживающий персонал мог провести настройку ENIAC на другую задачу, переставив вручную подключения примерно шести тысяч проводов. Все эти контакты было необходимо опять переключать, когда возникала задача другого типа.

Серийные машины

Первой электронно-вычислительной машиной, которая начала выпускаться серийно, была UNIVAC. Он стал первым видом электронного цифрового компьютера многоцелевого назначения. UNIVAC, создание которого датируется 1946-1951 гг., требовал периода сложений 120 мкс, общих умножений – 1800 мкс и делений – 3600 мкс.

Такие машины требовали большой площади, много электроэнергии и имели значительное количество ламп электронного вида.

В частности, советская электронно-вычислительная машина «Стрела» обладала 6400 этих ламп и 60 тысяч экземпляров диодов полупроводникового типа. Скорость быстродействия подобного поколения ЭВМ не была выше двух-трех тысяч действий в секунду, размеры оперативной памяти оказались не больше двух Кб. Лишь агрегат «М-2» (1958 г.) достиг оперативной памяти около четырех Кб, а скорость быстродействия машины достигла двадцати тысяч действий в секунду.

ЭВМ второго поколения

В 1948 г. нескольким учеными и изобретателями Запада был получен первый работающий транзистор. Это был механизм точечно-контактного вида, в котором три тонких металлических проводка контактировали с полоской из поликристаллического материала. Следовательно, семейство ЭВМ совершенствовались уже в те годы.

Первые модели выпущенных компьютеров, которые действовали на базе транзисторов, указывают на свое появление на последнем отрезке 1950-х гг., а лет через пять появились внешние формы цифровой вычислительной машины с существенно расширенными функциями.

Особенности архитектуры

Одним из важных принципов работы транзистора служит то, что он в единственном экземпляре сможет провести определенную работу за 40 обычных ламп, и даже тогда он сохранит более высокую скорость функционирования. Машина выделяет минимальный объем теплоты, и почти не будет пользоваться электрическими источниками и энергией. В связи с этим, требования к персональным электронно-вычислительным машинам выросли.

Параллельно с постепенной заменой обычных ламп электрического типа на эффективные транзисторы шел рост улучшения методики сохранения имеющихся данных. Идет расширение объема памяти, а магнитная модифицированная лента, которая впервые была использована в ЭВМ первого поколения UNIVAC, начала совершенствоваться.

Надо отметить, что в середине шестидесятых годов прошлого столетия использовался метод сохранения данных на дисках. Существенные продвижения в использовании компьютеров дали возможность получить скорость в миллион операций в одну секунду! В частности, к обычным транзисторным компьютерам второго поколения электронно-вычислительных машин можно причислить «Стретч» (Великобритания), «Атлас» (США). В то время СССР также производил высококачественные образцы ЭВМ (в частности «БЭСМ-6»).

Выпуск ЭВМ, которые созданы на базе транзисторов, послужил причиной сокращения их объема, веса, затрат электричества и стоимости машин, также улучшились надежность и эффективность. Это дало возможность увеличить число пользователей и перечень решаемых задач. С учетом признаков, которыми отличалось второе поколение ЭВМ, разработчики таких машин принялись конструировать алгоритмические формы языков для инженерно-технического (в частности, АЛГОЛ, ФОРТРАН) и хозяйственного (в частности, КОБОЛ) типа расчетов.

Гигиенические требования к электронно-вычислительным машинам также возрастают. В пятидесятые произошел очередной прорыв, но все же до современного уровня еще было далеко.

Важность ОС

Но даже в это время ведущей из задач технологий работы вычислительных машин было проведение сокращения ресурсов – рабочего времени и объема памяти. Для решения этой проблемы тогда начали конструировать прототипы нынешних операционных систем.

Типы первых операционных систем (ОС) давали возможность улучшать автоматизацию работы пользователей ЭВМ, которая была направлена на выполнение определенных задач: ввод в машину данных программ, вызовы нужных трансляторов, вызовы необходимых для программы современных библиотечных подпрограмм и т.д.

Поэтому, кроме программы и различной информации, в ЭВМ второго поколения надо было оставлять еще и особую инструкцию, где были указаны этапы обработки и перечень данных о программе и ее разработчиках. После этого в машины стали вводить параллельно определенное число заданий для операторов (комплекты с заданиями), в этих формах операционных систем надо было разделить виды ресурсов ЭВМ между определенными формами заданий – появился мультипрограммный способ работы для изучения данных.

Третье поколение

За счет разработки технологии создания интегральных микросхем (ИС) вычислительных машин удалось получить ускорение быстродействия и степени надежности существующих полупроводниковых схем, а также очередное сокращение их габаритов, использованной величины мощности и цены.

Интегральные формы микросхем теперь начали делать из фиксированного комплекта деталей электронного типа, которые были поставлены в прямоугольных вытянутых пластинах кремния, и имели длину одной стороны не более 1 см. Такой тип пластины (кристаллов) кладут в пластмассовый корпус малых объемов, размеры в нем можно вычислять лишь с помощью выделения т.н. «ножек».

Читайте также:  Фотоаппарат для активного отдыха

Из-за этих причин темпы развития ЭВМ начали стремительно возрастать. Это позволило не только улучшить качество работы и уменьшить стоимость таких машин, но и сформировать аппараты малого, простого, недорого и надежного массового типа – мини-ЭВМ. Эти машины сначала были предназначены для решения узкотехнических задач в разных упражнениях и методиках.

Ведущим моментом в те годы считались возможности унификации машин. Третье поколение ЭВМ создается с учетом совместимых отдельных моделей разных типов. Все остальные ускорения в развитии математических и различных программных обеспечений содействуют формированию программ пакетной формы для решаемости стандартных задач проблемно сориентированного программного языка. Тогда впервые появляются программные пакеты – формы операционных систем, на которых и развивается третье поколение ЭВМ.

Четвертое поколение

Активное совершенствование электронных устройств вычислительных машин способствовало появлению больших интегральных схем (БИС), где каждый кристалл содержал несколько тысяч деталей электрического типа. Благодаря этому стали производиться очередные поколения ЭВМ, элементная основа которых получила больший объем памяти и сокращенные циклы реализации команд: пользование байтов памяти в одной машинной операции стало значительно уменьшаться. Но, поскольку затраты на программирование почти не уменьшились, то на первый план вышли задачи сокращения ресурсов чисто человеческого, а не машинного типа, как раньше.

Производились операционные системы очередных видов, которые давали возможность операторам производить усовершенствование своих программ непосредственно за дисплеями ЭВМ, это упростило работу пользователей, вследствие чего в скором времени и появились первые разработки новой программной базы. Такой способ абсолютно противоречил теории начальных этапов информационных разработок, которые применяли ЭВМ первого поколения. Теперь ЭВМ стали использоваться не просто для записи больших объемов информации, но и для автоматизации и машинизации самых разных сфер деятельности.

Изменения в начале семидесятых

В 1971 году была выпущена большая интегральная схема вычислительных машин, где находился весь процессор ЭВМ обычных архитектур. Теперь оказалось возможным расположить в одной большой интегральной схеме почти все схемы электронного типа, которые не были сложными в типичной архитектуре ЭВМ. Так, выросли возможности массовых выпусков обычных устройств по небольшим ценам. Это и было новое, четвертое поколение ЭВМ.

С этого времени производилось много недорогих (использовались в компактных клавишных ЭВМ) и управляющих схем, которые умещались на одной либо нескольких крупных интегральных платах, имеющих процессоры, достаточные объемы оперативной памяти и структуру связей с датчиками исполнительного вида в механизмах управления.

Программы, которые работали с регулированием бензина в двигателях автомобилей, с передачей определенной электронной информации или с фиксированными режимами стирки белья, внедрялись в память ЭВМ или при использовании различного вида контроллеров, или прямо на предприятиях.

На семидесятые годы пришлось начало производства универсальных вычислительных систем, которые объединяли процессор, большой объем памяти, схемы разных сопряжений с механизмом ввода-вывода, расположенных в общей большой интегральной схеме (так называемые однокристальные ЭВМ) или, в других вариантах, больших интегральных схемах, расположенных на общей плате печатного типа. В итоге, когда четвертое поколение ЭВМ получило массовое распространение, началось повторение положения, сложившегося в шестидесятых, когда скромные мини-ЭВМ производили часть работ в крупных универсальных ЭВМ.

Свойства ЭВМ четвертого поколения

Электронно-вычислительные машины четвертого поколения были сложными и имели разветвленные возможности:

  • обычный мультипроцессорный режим;
  • программы параллельно-последовательного вида;
  • высокоуровневые виды компьютерных языков;
  • возникновение первых сетей ЭВМ.

Развитие технических возможностей этих устройств ознаменовалось такими положениями:

  1. Обычное опоздание сигнала на 0,7 нс./в.
  2. Ведущий вид памяти – типовой полупроводниковый. Период выработок информации из памяти подобного типа – 100–150 нс. Память – 1012–1013 символов.

Применение аппаратной реализации оперативных систем

Модульные системы начали применяться и для средств программного типа.

Впервые персональная электронно-вычислительная машина была создана весной 1976 г. На базе интегральных 8-битных контроллеров обычной схемы электронной игры, ученые произвели обычную, запрограммированную на языке BASIC, машину игрового типа «Apple», которая получила большую популярность. В начале 1977 г. появилась фирма Apple Comp., и началось производство первых на Земле персональных вычислительных машин Apple. История этого уровня ЭВМ выделяет это событие как самое важное.

В наши дни фирма Apple производит персональные компьютеры Macintosh, которые по многим параметрам превосходят образцы моделей IBM PC. Новые модели Apple отличаются не только исключительным качеством, но и обширными (по современным меркам) возможностями. Разработана также специальная операционная система для компьютеров от Apple, которая учитывает все их исключительные особенности.

Пятый вид поколения ЭВМ

В восьмидесятых процесс развития ЭВМ (поколения ЭВМ) входит в новый этап – машины пятого поколения. Появление этих аппаратов связывают с развитием микропроцессоров. С позиции системных построений характерны абсолютная децентрализация работы, а рассматривая программные и математические базы, – передвижение на уровень работы в программной структуре. Вырастает организация работы электронно-вычислительных машин.

Эффективность пятого поколения ЭВМ – сто восемь-сто девять операций за одну секунду. Для этого вида машин характерна многопроцессорная система, находящаяся на микропроцессорах ослабленных типов, которых используется сразу множественное число. Сейчас появляются электронно-вычислительные виды машин, которые нацелены на высокоуровневые виды компьютерных языков.

Современному человеку сложно представить свою жизнь без ЭВМ. Они одинаково успешно используются как в быту, так и в производстве. Но так было не всегда.

Путь развития электронно-вычислительных машин был довольно сложным и длительным. Эволюция оборудования подобного типа развивалась не стабильно: после ярких и значительных всплесков наблюдались длительные застои или падения.

История развития электронно-вычислительных машин

Началом этого пути можно считать конец 1623 года, когда В. Шикардом была создана машина, обладающая способностью складывать и отнимать числа. Машина, которая могла выполнять с числами все четыре действия, появилась только через несколько лет. Ее автором был Б. Паскаль.

Читайте также:  Смартфоны с диагональю меньше 5 дюймов

В 1823 году Бэббиджем создана вычислительная машина, похожая на предыдущие. Отличительной особенностью машины была способность печатать полученные результаты на специальной негативной пластинке, предназначенной для фотопечати. В действие этот аппарат приводил паровой двигатель. В 1890 году известным ученым Германом Холлеритом была разработана машина, способная работать с данными в таблицах.

После смерти этого ученого эволюция развития ЭВМ приостановилась. Застой длился до начала XX столетия, пока инженер Конрад Цузе не создал Z1 – первую механическую программируемую цифровую вычислительную машину. в 1941 году Цузе создает первую вычислительную машину, обладающую всеми свойствами современного компьютера Z3.

Первые электронно-вычислительные машины

Этапы развития и появления электронно-вычислительных машин можно условно подразделить на несколько.

  1. Идет формирование всех элементов, которые входят в состав ЭВ оборудования процессор, оперативка, устройство ввода – вывода и другие. В это время был создан новый язык программирования – ассамблер.
  2. Старые громоздкие машины заменило более компактное оборудование, способное выполнять такие функции, как команды для ввода. Это стало возможным, благодаря созданию магнитных сердечек памяти, миниатюрных транзисторов и регистров.
  3. Изобретение микросхем дало возможность размещению большого объема информации на нескольких сантиметрах. Это увеличило уровень производительности эффективности работы ЭВМ.
  4. Этот период известен созданием таких новейших интегральных схем, как БИС и СБИС. Благодаря этому ученым удалось добиться уменьшения габаритных размеров машин, а также понизить их себестоимость.
  5. Данный этап известен под названием микропроцессорного. Современные ЭВМ создаются на основе быстродействующих и мощных процессоров. Это позволило увеличить скорость обработки полученной компьютером информации.

Каждый из этих этапов имеет свои достижения и падения. Но без них развитие современных электронно-вычислительных машин было бы невозможно.

Поколение персональных электронно-вычислительных машин

Особое внимание хотелось бы обратить на этап развития персональных ЭВМ. История развития персональных электронно-вычислительных машин была стремительной и постоянно шла по восходящей.

Первым серийным ПК является Альтаир 8800, созданный в 1975 году. Он выпускался в виде отдельных блоков, которые нужно было собирать самостоятельно.

В 1976 году вышла в серию машина Apple I, в комплекте с которой шел ее собственный монитор, а в 1977 году появилась уже более совершенная модель Apple II.

В конце 1981 года на просторах Советского Союза была разработана первая персональная электронно-вычислительная машина Электроника НЦ-8010. Для ее создания были использованы только отечественные комплектующие. На ее основе позже были выпущены такие модели, как Агат, БК-0010, Корвет, УКНЦ.

Среди пользователей чрезвычайно популярной была модель ПК ZX Spectrum. Что же касается более поздней разработки IBM PC, она состояла как из отечественных, так и из импортных комплектующих.

В 1983 году появился первый персональный компьютер, в комплекте которого шла мышка. Оборудование было выпущено под известным сегодня брендом Apple.

Гигиенические требования к персональным электронно-вычислительным машинам

Летом 2003 года были утверждены санитарно-гигиенические требования, которым должны отвечать не только персональные компьютеры, но и рабочие места, на которых они расположены.

В этом документе оговариваются такие параметры:

  • уровень шума и вибраций;
  • освещение;
  • уровень электромагнитного поля;
  • концентрация в воздухе вредных веществ;
  • уровень рентгеновского излучения.

Соблюдение этих и других нормативов направлено на сохранение здоровья пользователей персональных электронно-вычислительных машин.

Реестр российских программ для электронных вычислительных машин

«Единый реестр российских программ для электронных вычислительных машин и баз данных» создан с целью расширения использования российской IT-продукции и технологий. В реестре отражено все ПО, официально произведенное в России. Формированием и ведением реестра занимается Минкомсвязь России.

Внесение данных о ПО обеспечение важно для любого отечественного предприятия. Это связано с тем, что начиная с 2013 года приоритет по закупкам ПО для муниципальных нужд принадлежит именно отечественному программному обеспечению.

Специальность оператор электронно-вычислительных и вычислительных машин

Активное внедрение в жизнь электронно-вычислительных машин повлекло за собой необходимость появления такой профессии, как оператор ЭВМ.

Работа оператором ЭВМ заключается во введении информации в ПК, ее обработке и передаче по локальным сетям через интернет. Оператор может работать с информацией, представленной в разных форматах (текстовый, видео-, аудио-, графическая и другая).

Оператор ЭВМ — это специальность, которая необходима для функционирования таких учреждений, как банк, страховая компания, промышленные и торговые предприятия, издательства.

Специалисты в области ЭВМ востребованы в разных отраслях.

Производители и поставщики цифровых электронно-вычислительных машин

Современный рынок цифровых ЭВМ предлагает пользователям широкий выбор оборудования и комплектующих от разных производителей.

Среди самых известных можно выделить такие:

  • Acer. Компания создана в 1976 году. Сегодня она занимает одно из четырех первых мест в мире среди поставщиков ЭВМ. Компания специализируется на поставке не только оборудования, но и ее качественных комплектующих.
  • ASUS. Начиная с 1989 года, компания смогла завоевать лидирующие позиции среди самых известных в мире поставщиков цифрового ЭВ оборудования. Среди широкого каталога наименований, выпускаемого под брендом этой компании, ноутбуки, планшеты, смартфоны, серверы, беспроводные устройства.
  • LG Electronics. Со дня своего основания (1958 год) компания прочно заняла лидирующие позиции в звене производителей ЭВМ, которая активно используется в быту и на производстве (смартфоны, ноутбуки, нетбуки, планшеты). Оборудование отличается не только высоким качеством, но и доступной ценой.

Современные цифровые электронно-вычислительные машины стали незаменимым атрибутом нашей жизни. Это направление техники не стоит на месте, а постоянно развивается и совершенствуется.

Больше о требованиях, производителях, поставщиках электронно-вычислительный машин можно узнать на ежегодной выставке «Связь».

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
Adblock detector