No Image

Этилен перманганат калия в кислой среде

2 просмотров
22 января 2020

Алкены обладают большой реакционной способностью, чем алканы. Это обусловлено наличием в их молекулах двойной связи. π–Связь менее прочная, чем σ-связь. Она легко разрушается под воздействием различных реагентов.

Наличие подвижной, легко поляризуемой π–связи приводит к тому, что алкены легко вступают в реакции присоединения.

В реакциях присоединения двойная связь выступает как донор электронов, поэтому для алкенов характерны реакции электрофильного присоединения.

Реакции присоединения

1. Гидрирование или гидрогенизация (присоединение водорода)

Эта реакция протекает в присутствии катализатора – мелко раздробленного никеля, платины или палладия при нагревании и повышенном давлении.

При гидрогенизации олефины превращаются в предельные углеводороды.

2. Галогенирование (присоединение галогенов)

Присоединение галогенов по двойной связи С=С происходит легко при обычных условиях (при комнатной температуре, без катализатора). Образуются дигалогеналканы:

Реакция с бромной водой (р-р Br2 в Н2О) является качественной реакцией на наличие двойной связи. Происходит обесцвечивание красно-бурой окраски бромной воды.

Видеоопыт «Взаимодействие этилена с бромной водой»

3. Гидрогалогенирование (присоединение галогеноводородов)

При взаимодействии алкенов с галогеноводородами (НCl, НBr) образуются галогеналканы.

Реакция идет по механизму электрофильного присоединения с гетеролитическим разрывом связей. Электрофилом является протон Н+ в составе молекулы галогеноводорода HX (X — галоген).

Присоединение галогеноводородов к алкенам несимметричного строения происходит по правилу В.В. Марковникова.

Присоединение против правила Марковникова происходит в том случае, когда заместитель при двойной связи оттягивает электронную плотность на себя, т.е проявляет электроноакцепторные свойства (–I и/или –М-эффект).

В молекуле трихлопропена Сl3C-CH=CH2 группа СCl3 проявляет отрицательный индуктивный эффект и π -электронная плотность связи С=С смещается к менее гидрогенизированному атому углерода. В результате на атоме С(2) возникает частичный отрицательный заряд δ- , а на атоме С(1) – частичный положительный заряд δ+. При взаимодействии с галогеноводородом водород присоединяется к менее гидрогенизированному атому углерода, а галоген – к более гидрогенизированному:

Также в присутствии какого-либо органического пероксида полярные молекулы галогеноводородов реагируют с алкенами не по правилу Марковникова.

Это связано с тем, что в присутствии перекиси реакция присоединения идет не по электрофильному, а по радикальному механизму.

4. Гидратация (присоединение воды)

При взаимодействии алкенов с водой в присутствии минеральных кислот (серной, фосфорной) образуются одноатомные спирты. Минеральные кислоты выполняют роль катализаторов и являются источниками протонов.

Присоединение воды к несимметричным алкенам идет по правилу Марковникова.

Реакция присоединения воды к этилену в присутствии твердых катализаторов используется для промышленного получения этилового спирта из непредельных углеводородов, содержащихся в газах крекинга нефти (попутных газов), а также в коксовых газах.

5. Реакции полимеризации

Число n называется степенью полимеризации. Реакции полимеризации алкенов идут в результате присоединения по кратным связям.

Полимеризация различных производных алкенов дает ценные промышленные продукты: полиэтилен, полипропилен, поливинилхлорид и др.

Реакции окисления

1. Горение

А) Полное (избыток О2).

Газообразные гомологи алкенов образуют с воздухом взрывчатые смеси.

Как и все углеводороды, алкены горят в кислороде, и при этом образуют диоксид углерода и воду:

Б) Неполное (недостаток О2).

2. Неполное каталитическое окисление

Если смешать алкен с кислородом и пропустить эту смесь над нагретым до 200 0 С серебряным катализатором, то образуется оксид алкена (эпоксид). Циклические оксиды широко используются в органическом синтезе.

3. Окисление перманганатом калия в нейтральной или щелочной среде (реакция Вагнера)

Мягкое окисление алкенов водным раствором перманганата калия приводит к образованию двухатомных спиртов.

В результате этой реакции происходит обесцвечивание фиолетовой окраски водного раствора KMnO4 и выпадает коричневый осадок оксида марганца (IV).

Видеоопыт «Взаимодействие этилена с раствором перманганата калия»

Эта реакция используется как качественная реакция на алкены и другие непредельные углеводорода.

4. Окисление перманганатом калия в кислой среде

При жестком окислении алкенов кипящим раствором KMnO4 в кислой среде происходит полный разрыв двойной связи с образование а) карбоновых кислот; б) кетонов (если атом углерода при двойной связи содержит два заместителя); в) углекислого газа (если двойная связь на конце молекулы, то образуется муравьиная кислота, которая легко окисляется до CO2):

Изомеризация алкенов

Алкены вступают в реакцию изомеризации при нагревании в присутствии катализаторов (Al2O3).

Изомеризация алкенов приводит или к перемещению π–связи:

Окислительно-восстановительные реакции с участием органических веществ

Склонность органических соединений к окислению связывают с наличием кратных связей, функциональных групп, атомов водорода при атоме углерода, содержащем функциональную группу.

Последовательное окисление органических веществ можно представить в виде следующей цепочки превращений:

Насыщенный углеводород→ Ненасыщенный углеводород → Спирт→ Альдегид (кетон) → Карбоновая кислота →CO2 ↑ + H2O

Читайте также:  Часы телефон xiaomi mi band 2

Генетическая связь между классами органических соединений представляется здесь как ряд окислительно – восстановительных реакций, обеспечивающих переход от одного класса органических соединений к другому. Завершают его продукты полного окисления (горения) любого из представителей классов органических соединений.

Зависимость окислительно-восстановительной способности органического вещества от его строения:

Повышенная склонность органических соединений к окислению обусловлена наличием в молекуле веществ:

  • кратных связей (именно поэтому так легко окисляются алкены, алкины, алкадиены);
  • определенных функциональных групп, способных легко окисляться ( –-SH, –OH (фенольной и спиртовой), – NH2 ;
  • активированных алкильных групп, расположенных по соседству с кратными связями. Например, пропен может быть окислен до непредельного альдегида акролеина кислородом воздуха в присутствии водяных паров на висмут- молибденовых катализаторах.

А также окисление толуола до бензойной кислоты перманганатом калия в кислой среде.

  • наличие атомов водорода при атоме углерода, содержащем функциональную группу.

Примером является реакционная способность в реакциях окисления первичных, вторичных и третичных спиртов по реакционной способности к окислению.

Несмотря на то, что в ходе любых окислительно-восстановительных реакций происходит как окисление, так и восстановление, реакции классифицируют в зависимости от того, что происходит непосредственно с органическим соединением (если оно окисляется, говорят о процессе окисления, если восстанавливается – о процессе восстановления).

Так, в реакции этилена с перманганатом калия этилен будет окисляться, а перманганат калия – восстанавливается. Реакцию называют окислением этилена.

Применение понятия «степени окисления» (СО) в органической химии очень ограничено и реализуется, прежде всего, при составлении уравнений окислительно-восстановительных реакций. Однако, учитывая, что более или менее постоянной состав продуктов реакции возможен только при полном окислении (горении) органических веществ, целесообразность расстановки коэффициентов в реакциях неполного окисления отпадает. По этой причине обычно ограничиваются составлением схемы превращений органических соединений.

При изучении сравнительной характеристики неорганических и органических соединений мы знакомились с использованием степени окисления (с.о.) (в органической химии, прежде всего углерода) и способами ее определения:

1) вычисление средней с.о. углерода в молекуле органического вещества:

Такой подход оправдан, если в ходе реакции в органическом веществе разрушаются все химические связи (горение, полное разложение).

2) определение с.о. каждого атома углерода:

В этом случае степень окисления любого атома углерода в органическом соединении равна алгебраической сумме чисел всех связей с атомами более электроотрицательных элементов, учитываемых со знаком «+» у атома углерода, и числа связей с атомами водорода (или другого более электроположительного элемента), учитываемых со знаком «-» у атома углерода. При этом связи с соседними атомами углерода не учитывают.

В качестве простейшего примера определим степень окисления углерода в молекуле метанола.

Атом углерода связан с тремя атомами водорода (эти связи учитываются со знаком « – »), одной связью – с атомом кислорода (ее учитывают со знаком «+»). Получаем: -3 + 1 = -2.Таким образом, степень окисления углерода в метаноле равна -2.

Вычисленная степень окисления углерода хотя и условное значение, но оно указывает на характер смещения электронной плотности в молекуле, а ее изменение в результате реакции свидетельствует об имеющем место окислительно-восстановительном процессе.

Уточняем, в каких случаях лучше использовать тот или иной способ.

Процессы окисления, горения, галогенирования, нитрования, дегидрирования, разложения относятся к окислительно-восстановительным процессам.

При переходе от одного класса органических соединений к другому и увеличения степени разветвленности углеродного скелета молекул соединений внутри отдельного класса степень окисления атома углерода, ответственного за восстанавливающую способность соединения, изменяется.

Органические вещества, в молекулах которых содержатся атомы углерода с максимальными (- и +) значениями СО (-4, -3, +2, +3), вступают в реакцию полного окисления-горения, но устойчивых к воздействию мягких окислителей и окислителей средней силы.

Вещества, в молекулах которых содержится атомы углерода в СО -1; 0; +1, окисляются легко, восстановительные способности их близки, поэту их неполное окисление может быть достигнуто за счет одного из известных окислителей малой и средней силы. Эти вещества могут проявлять двойственную природу, выступая и в качестве окислителя, подобно тому, как это присуще неорганическим веществам.

При написании уравнений реакций горения и разложения органических веществ лучше использовать среднее значение с.о. углерода.

Составим полное уравнение химической реакции методом баланса.

Среднее значение степени окисления углерода в н-бутане:

Степень окисления углерода в оксиде углерода(IV) равна +4.

Составим схему электронного баланса:

Обратите внимание на первую половину электронного баланса: у атома углерода в дробном значении с.о. знаменатель равен 4, поэтому расчет передачи электронов ведем по этому коэффициенту.

Т.е. переход от -2,5 до +4 соответствует переходу 2,5 + 4 = 6,5 единиц. Т.к. участвует 4 атома углерода, то 6,5 · 4 = 26 электронов будет отдано суммарно атомами углерода бутана.

Читайте также:  Тула 8 заказное письмо что это такое

C учетом найденных коэффициентов уравнение химической реакции горения н-бутана будет выглядеть следующим образом:

Можно воспользоваться методом определения суммарного заряда атомов углерода в молекуле:

(4C) -10 …… → (1C) +4 , учитывая, что количество атомов до знака = и после должно быть одинаково, уравниваем (4C) -10 …… →[(1C) +4 ] · 4

Следовательно, переход от -10 до +16 связан с потерей 26 электронов.

В остальных случаях определяем значения с.о. каждого атома углерода в соединении, обращая при этом внимание на последовательность замещения атомов водорода у первичных, вторичных, третичных атомов углерода:

Вначале протекает процесс замещения у третичных, затем – у вторичных, и, в последнюю очередь – у первичных атомов углерода.

Процессы окисления зависят от строения алкена и среды протекания реакции.

1.При окислении алкенов концентрированным раствором перманганата калия KMnO4 в кислой среде (жесткое окисление) происходит разрыв σ- и π-связей с образованием карбоновых кислот, кетонов и оксида углерода(IV). Эта реакция используется для определения положения двойной связи.

а) Если двойная связь находится на конце молекулы (например, у бутена-1), то одним из продуктов окисления является муравьиная кислота, легко окисляющаяся до углекислого газа и воды:

б) Если в молекуле алкена атом углерода при двойной связи содержит два углеродных заместителя (например, в молекуле 2-метилбутена-2), то при его окислении происходит образование кетона, т. к. превращение такого атома в атом карбоксильной группы невозможно без разрыва C–C-связи, относительно устойчивой в этих условиях:

в) Если молекула алкена симметрична и двойная связь содержится в середине молекулы, то при окислении образуется только одна кислота:

Особенностью окисления алкенов, в которых атомы углерода при двойной связи содержат по два углеродных радикала, является образование двух кетонов:

2.В нейтральной или слабощелочной средах окисление сопровождается образованием диолов (двухатомных спиртов), причем гидроксильные группы присоединяются к тем атомам углерода, между которыми существовала двойная связь:

В ходе этой реакции происходит обесцвечивание фиолетовой окраски водного раствора KMnO4. Поэтому она используется как качественная реакция на алкены (реакция Вагнера).

3. Окисление алкенов в присутствии солей палладия (Вакер-процесс) приводит к образованию альдегидов и кетонов:

Гомологи окисляются по менее гидрированному атому углерода:

Окисление ацетилена и его гомологов протекает в зависимости от того, в какой среде протекает процесс.

а) В кислой среде процесс окисления сопровождается образованием карбоновых кислот:

Реакция используется для определения строения алкинов по продуктам окисления:

В нейтральной и слабощелочной средах окисление ацетилена сопровождается образованием соответствующих оксалатов (солей щавелевой кислоты), а окисление гомологов – разрывом тройной связи и образованием солей карбоновых кислот:

1) В кислой среде:

H-C≡C-H KMnO 4, H 2 SO 4 → HOOC-COOH (щавелевая кислота)

2) В нейтральной или щелочной среде:

(бензол и его гомологи)

При окисления аренов в кислой среде следует ожидать образования кислот, а в щелочной – солей.

Гомологи бензола с одной боковой цепью (независимо от ее длины) окисляются сильным окислителем до бензойной кислоты по α -углеродному атому. Гомологи бензола при нагревании окисляются перманганатом калия в нейтральной среде с образованием калиевых солей ароматических кислот.

Подчеркиваем, что если в молекуле арена несколько боковых цепей, то в кислой среде каждая из них окисляется по a-углеродному атому до карбоксильной группы, в результате чего образуются многоосновные ароматические кислоты:

1) В кислой среде:

2) В нейтральной или щелочной среде:

3) Окисление гомологов бензола перманганатом калия или бихроматом калия при нагревании:

4) Окисление кумола кислородом в присутствии катализатора (кумольный способ получения фенола):

Следует обратить внимание на то, что при мягком окислении стирола перманганатом калия КMnO4 в нейтральной или слабощелочной среде происходит разрыв π -связи ,образуется гликоль (двухатомный спирт). В результате реакции окрашенный раствор перманганата калия быстро обесцвечивается и выпадает коричневый осадок оксида марганца (IV).

Окисление же сильным окислителем – перманганатом калия в кислой среде – приводит к полному разрыву двойной связи и образованию углекислого газа и бензойной кислоты, раствор при этом обесцвечивается.

Следует помнить, что:

1) первичные спирты окисляются до альдегидов:

2) вторичные спирты окисляются до кетонов:

3) для третичных спиртов реакция окисления не характерна.

Третичные спирты, в молекулах которых нет атома водорода при атоме углерода, содержащем группу ОН, в обычных условиях не окисляются. В жестких условиях (при действии сильных окислителей и при высоких температурах) они могут быть окислены до смеси низкомолекулярных карбоновых кислот, т.е. происходит деструкция углеродного скелета.

Читайте также:  Что лучше rav4 или tiguan

При окислении метанола подкисленным раствором перманганата калия или дихромата калия образуется CO2.

Первичные спирты при окислении в зависимости от условий протекания реакции могут образовать не только альдегиды, но и кислоты.

Например, окисление этанола дихроматом калия на холоду заканчивается oбразованием уксусной кислоты, а при нагревании – ацетальдегида:

3CH3–CH2OH + K2Cr2O7 + 4H2SO4 3CH3–CHO + K2SO4 + Cr2(SO4)3 + 7H2O

Помним о влиянии среды на продукты реакций окисления спиртов, а именно:

горячий нейтральный раствор KMnO4 окисляет метанол до карбоната калия, а остальные спирты – до солей соответствующих карбоновых кислот:

1,2-Гликоли легко расщепляются в мягких условиях при действии иодной кислоты. В зависимости от строения исходного гликоля продуктами окисления могут быть альдегиды или кетоны:

Если три или более ОН-групп связаны с соседними атомами углерода, то при окислении иодной кислотой средний или средние атомы превращаются в муравьиную кислоту

Окисление гликолей перманганатом калия в кислой среде проходит аналогично окислительному расщеплению алкенов и также приводит к образованию кислот или кетонов в зависимости от строения исходного гликоля.

Альдегиды и кетоны

Альдегиды легче, чем спирты, окисляются в соответствующие карбоновые кислоты не только под действием сильных окислителей (кислород воздуха, подкисленные растворы KMnO4 и K2Cr2O7), но и под действием слабых (аммиачный раствор оксида серебра или гидроксида меди(II)):

CH3–CHO + 2[Ag(NH3)2]OH CH3–COONH4 + 2Ag + 3NH3 + H2O

Особое внимание. Окисление метаналя аммиачным раствором оксида серебра приводит к образованию карбоната аммония, а не муравьиной кислоты:

Для составления уравнений окислительно- восстановительных реакций используют как метод электронного баланса, так и метод полуреакций (электронно-ионный метод).

Для органической химии важна не степень окисления атома, а смещение электронной плотности, в результате которого на атомах появляются частичные заряды, никак не согласующиеся со значениями степеней окисления.

Многие вузы включают в билеты для вступительных экзаменов задания по подбору коэффициентов в уравнениях ОВР ионно-электронным методом (методом полуреакций). Если в школе и уделяется хоть какое-то внимание этому методу, то, в основном при окислении неорганических веществ.

Попробуем применить метод полуреакций для окисления сахарозы перманганатом калия в кислой среде.

Преимущество этого метода заключается в том, что нет необходимости сразу угадывать и записывать продукты реакции. Они достаточно легко определяются в ходе уравнения. Окислитель в кислой среде наиболее полно проявляет свои окислительные свойства, например, анион MnO – превращается в катион Mn 2+ , легко окисляющиеся органические соединения окисляются до CO2.

Запишем в молекулярном виде превращения сахарозы:

В левой части не хватает 13 атомов кислорода, чтобы устранить это противоречие, прибавим 13 молекул H2O.

Левая часть теперь содержит 48 атомов водорода, они выделяются в виде катионов Н + :

Теперь уравняем суммарные заряды справа и слева:

Схема полуреакций готова. Составление схемы второй полуреакции обычно не вызывает затруднений:

Объединим обе схемы:

Сократив обе части уравнения на 65 H2O и 240 Н, получим сокращенное ионное уравнение окислительно-восстановительной реакции:

Задание для самостоятельной работы:

Закончите УХР и расставьте коэффициенты методом электронного баланса или методом полуреакций:

Особое внимание учащихся следует обратить на поведение окислителя – перманганата калия КМnО4 в различных средах. Это связано с тем, что окислительно-восстановительные ре акции в КИМах встречаются не только в заданиях С1 и С2. В заданиях СЗ, представляющих цепочку превращений органических веществ нередки уравнения окисления-восстановления. В школе часто окислитель записывают над стрелкой как [О]. Требованием к выполнению таких заданий на ЕГЭ является обязательное обозначение всех исходных веществ и продуктов реак ции с расстановкой необходимых коэффициентов.

Установите со­от­вет­ствие между ве­ще­ства­ми и при­зна­ком про­те­ка­ю­щей между ними реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

Реагирующие вещества Признак реакции

А) бутадиен и бром (р-р)

Б) уксусная кислота и гидроксид меди (II)

В) этилен и перманганат калия (кислая среда)

Г) белок и азотная кислота

1) растворение осадка

2) образование кирпично-красного осадка

3) обесцвечивание раствора

4) появление фиолетовой окраски раствора

5) жёлтое окрашивание

Запишите в ответ цифры, рас­по­ло­жив их в порядке, со­от­вет­ству­ю­щем буквам:

A Б В Г

Бутадиен присоединяет бром по месту разрыва двойных связей. Уксусная кислота реагирует с основаниями, образуется растворимая соль. Раствор перманганата калия имеет малиновый цвет, разрывает двойную связь алкенов, раствор обесцвечивается. Взаимодействие белка и азотной кислоты окрашивает раствор в желтый цвет.

Комментировать
2 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector