No Image

Шаговый и бесколлекторный двигатель

СОДЕРЖАНИЕ
0 просмотров
22 января 2020

20 сентября 2018

Какой тип маломощного двигателя постоянного тока выбрать из трех существующих? Это определяется поставленной задачей, но, вне зависимости от выбора, у STMicroelectronics найдется микросхема драйвера для любого из них.

Диапазон применений маломощных двигателей постоянного тока (DC) расширился в результате многих факторов. Во-первых, двигатели стали более эффективными и мощными благодаря новым магнитным материалам. Во-вторых, в связи с использованием интеллектуальных микросхем с интегрированными полевыми транзисторами (FET) управление двигателями стало более легким. В-третьих, несмотря на то, что в большинстве приложений интернета вещей (IoT) лишь регистрируются те или иные состояния, а потребности в движении не возникает, рост разнообразия приложений IoT привел к необходимости малогабаритных двигателей.

Что такое маломощный двигатель постоянного тока? Официального определения или стандарта нет, но универсальное понимание в индустрии таково: двигатель со среднеквадратичным (RMS) значением тока привода до 1 А и пиковым значением тока 2 А считается маломощным устройством. Эти цифры могут показаться достаточно большими по сравнению с потреблением соответствующей электроникой миллиамперных токов. Однако многие из вышеуказанных двигателей используются в приложениях с малым коэффициентом заполнения, чьи совокупные потребности в энергии довольно скромны, даже если собственные требования приложений к максимальной мощности намного больше, чем необходимо их электронной составляющей.

Области применения маломощных двигателей разнообразны: от электроники для развлечений – до стандартной продукции и изделий для ответственного применения. Вот несколько сфер, где они используются:

  • беспроводные системы Smart HVAC;
  • регулировка и тонкая настройка производственных процессов;
  • научное приборостроение;
  • игры и развлечения;
  • роботизированные приводы;
  • медицинское оборудование, например — для позиционирования зондов, для контроля потока жидкости и для лабораторной диагностики.

Три основные топологии двигателя

Три часто используемые конфигурации маломощных DC-двигателей – коллекторные, бесколлекторные (BLDC) и шаговые. Каждый из них работает благодаря взаимодействию между токами в катушках (или обмотках) и постоянными магнитами (в большинстве конструкций), что приводит к притяжению/отталкиванию магнитного поля, вызывающему вращение. Все три вида двигателей имеют некоторые сходства, но отличаются методом управления переключением тока, протекающего через обмотки ротора и статора.

Они также отличаются возможностью выполнения определенных задач, качеством этого выполнения и гибкостью управления.

  • Исторически первым был двигатель коллекторного типа. По мере вращения ротора контактные щетки, представляющие собой сплошные контакты, состоящие, как правило, из графита, касаются соответствующих областей на роторе (рисунок 1). По мере вращения ротора изменение точек контакта щетки вызывает изменение направления потока тока и, следовательно, магнитного поля. Затем взаимодействие магнитного поля между ротором и статором меняется на противоположное, что вынуждает ротор продолжать движение.

Рис. 1. Коллекторный двигатель постоянного тока

Данная механическая схема концептуально проста. Однако ее недостаток в том, что щетки изнашиваются и нуждаются в замене, реализация интеллектуального управления сложна, потому что переключить данный двигатель довольно трудно, к тому же, щетки создают электромагнитные помехи (EMI), также известные как радиочастотные помехи (RFI).

В простейшем варианте коллекторный двигатель не нуждается в электронном управлении – он просто работает в зависимости от токовой и механической нагрузок. В других вариантах силовая шина двигателя включается и выключается при помощи транзисторной схемы, что является простейшим вариантом управления. Также возможно использование микросхемы-драйвера для повышения производительности и обеспечения контроля над скоростью и вращательным моментом.

  • В двигателе BLDC механическая коммутация заменена электрической с использованием транзисторов. Чаще всего используются МОП-транзисторы (MOSFET), которые управляются драйвером затвора (в некоторых конструкциях используются биполярные транзисторы с изолированным затвором – IGBT). Отдельный контроллер управляет точным переключением катушки в момент, необходимый для поддержания вращения двигателя на желаемой скорости (рисунок 2).

Рис. 2. Бесколлекторный двигатель постоянного тока

Примечание: двигатели BLDC иногда называют электронно-коммутируемыми (EC) двигателями, что является более точным определением.

В BLDC магнитное поле ротора присутствует всегда, оно генерируется постоянными магнитами. Когда ток направляется от одной фазы двигателя к другой, магнитные поля объединяются, генерируя изменяющееся поле статора.

Управление двигателем производится не только при помощи электроники. Вместо этого переключение может быть сформировано в драйвере затвора с контролируемым временем нарастания и спада для уменьшения EMI/RFI. Основная проблема заключается в том, что более мягкое переключение приводит к потере мощности и снижению КПД двигателя, и в этой ситуации разработчику необходимо найти максимально компромиссное решение. Некоторые новые драйверы затвора используют множество сложных и тонких трюков, чтобы облегчить эту задачу.

  • Шаговый двигатель использует концепцию двигателя BLDC, включая в себя большое количество катушек (или полюсов), расположенных по периферии двигателя (рисунок 3). Путем поочередного включения и выключения этих полюсов индуцируется шаг и вращение ротора в прямом или обратном направлении.

Рис. 3. Шаговый двигатель

Полюсов может быть и 16, и 128 (или более), в зависимости от требуемой точности вращения, прямо пропорциональной их количеству. Шаговые двигатели доступны в однополярных двухфазных и биполярных двух-, трех- и пятифазных конфигурациях. Самый распространенный из них – биполярный двухфазный двигатель.

В шаговом двигателе магнитное поле ротора генерируется постоянным магнитом, а магнитное поле статора – током, протекающим в определенной фазе. В результате ротор будет выравниваться в соответствии с магнитным полем статора, чтобы достичь заданного положения.

Шаговый двигатель хорошо подходит для задач, где необходимы быстрые остановка/запуск, позиционирование или движение назад/вперед, однако он не подойдет для долговременной непрерывной работы. Он часто используется в принтерах и приборах с поэтапным позиционированием (это только два из его многочисленных применений). Несмотря на то, что точность позиционирования зависит от числа полюсов, использование усовершенствованного метода, в котором смежные полюсы включаются частично (так называемый «микрошаг»), позволяет более точно управлять переключением и позиционированием.

Для управления двигателем необходима как мощность, так и стратегия

Полная система управления двигателем состоит из нескольких функциональных блоков (рисунок 4):

Рис. 4. Путь сигнала управления двигателем

  • Контроллер. Контроллер решает, что мотор должен делать для выполнения текущей задачи в данный момент времени, и определяет, какая мощность в какой момент необходима для полюсов. Он может представлять собой отдельную интегральную схему с фиксированной функцией или быть частью прошивки более крупной системы.

Если к двигателю подключают контур обратной связи, как сейчас делают многие производители, добавляя датчик положения на вал ротора, то контроллер также оценивает положение и скорость двигателя и определяет соответствующие изменения, необходимые для управления мощностью.

  • Выходной сигнал контроллера подается на драйвер управления затвором, который преобразует низковольтные и слаботоковые команды включения/выключения в более высокие токи (и часто более высокие напряжения), необходимые МОП-транзистору (или IGBT). Довольно часто драйвер гальванически изолирован.
  • МОП-транзисторы (или IGBT) являются фактическими ключами питания, которые управляют подачей тока на катушки двигателя.
  • Катушки двигателя. Ток, протекающий через обмотки катушки двигателя, создает электромагнитное поле, которое взаимодействует со стационарными магнитами в двигателе, заставляя его начать вращение.

Сходства и различия интегральных схем для управления двигателем

Преимущество маломощных двигателей, помимо их скромных потребностей в токе и напряжении, заключается в том, что драйверы затвора MOSFET могут быть интегрированы с контроллерами и оптимизированы для конкретных потребностей. Рассмотрим трио соответствующих предложений от STMicroelectronics. Эти три микросхемы от ST имеют множество базовых характеристик, которые позволяют применять их совместно с различными типами двигателей. Помимо этого, они облегчают моделирование и просты в изучении.

Вот несколько преимуществ, которыми обладают эти изделия:

  • максимальная интеграция с использованием интерфейса микроконтроллера (MCU), логики управления, драйвера и моста МОП-транзистора (требуется только несколько пассивных компонентов и нет необходимости во внешних активных компонентах);
  • малое рабочее напряжение 1,8…10 В, которое хорошо подходит для низковольтных двигателей, в особенности – для работающих от небольших аккумуляторных батарей;
  • высокий выходной ток до 1,3 A (RMS) и 2 A (пиковое значение) для каждого выхода;
  • энергопотребление в режиме ожидания до 80 нA;
  • повышенная надежность благодаря блокировке при падении напряжения (UVLO), тепловой защите и защите от перегрузки по току;
  • небольшой QFN-корпус размером 3×3 мм.
Читайте также:  Функции хуавей п смарт

Рассмотрим сходства и различия трех данных микросхем для управления двигателем. STSPIN220, предназначенная для шаговых двигателей, объединяет в себе логику управления, высокую эффективность и малое сопротивление «сток-исток» открытого канала RDS(ON) (рисунок 5). Контроллер реализует управление токовым режимом с помощью широтно-импульсной модуляции (PWM) с программируемым временем выключения. STSPIN220 поддерживает разрешение 256 микрошагов на один полный шаг, что позволяет сделать движение максимально плавным.

Рис. 5. Микросхема STSPIN220 для управления шаговым двигателем

Микросхемы, аналогичные модели STSPIN220:

  • STSPIN230 – монолитный драйвер для трехфазных двигателей BLDC;
  • STSPIN240 – монолитный драйвер для двух независимых двигателей постоянного тока;
  • STSPIN250 – монолитный драйвер для одного двигателя постоянного тока.

Примечание: драйвер STSPIN250 предназначен для одного двигателя в отличие от двухмоторного драйвера STSPIN240. STSPIN250 может обеспечивать более высокий ток 2,6 А (среднеквадратичное значение) и 4 А (пиковое значение).

Все эти интегральные схемы имеют максимально схожий внешний интерфейс и оперативные команды, функционально отличаются лишь их интерфейсы со стороны двигателя.

Делаем выбор

Решение о выборе типа двигателя является простым и сложным одновременно. Даже при существовании основных принципов выбора могут возникнуть ситуации, которые будут исключением из правил. Каждый тип двигателя отличается характеристиками скорости, угла поворота против крутящего момента, остановки. При выборе необходимо сопоставить желаемые функции и ограничения готового устройства с параметрами двигателя.

В большинстве случаев коллекторный и бесколлекторный двигатели не подходят для решений, в которых необходим шаговый вариант. Он лучше подходит для постоянного чередования запуска/остановки/позиционирования, в то время как первые два более пригодны для непрерывной работы. При выборе между коллекторным и бесколлекторным двигателями рассмотрите следующие аспекты:

  • коллекторные двигатели имеют меньший срок службы, чем двигатели BLDC; в первом случае срок службы зависит от износа подшипников и щеточного механизма, во втором срок ограничен только износом подшипников. Кроме того, щетки, быстро собирающие проводящую пыль, могут загрязнять другие поверхности;
  • высококачественные коллекторные двигатели могут достигать скорости 10 000 об/мин, в то время как конструкции двигателей BLDC позволяют увеличить эту скорость в 5 или даже в 10 раз;
  • коллекторные двигатели могут работать непосредственно от источника питания и, следовательно, нуждаются только в двух проводах, в то время как двигатели BLDC нуждаются в электронной коммутации, и в этом случае необходимо не менее трех проводов плюс провода датчика;
  • КПД обоих типов примерно одинаков, а вот источники потерь в них различаются. Для коллекторных двигателей большая их часть возникает в обмотках и при трении, связанном со щеточным механизмом, в то время как двигатели BLDC испытывают те же потери в обмотках, плюс дополнительные потери от вихревых токов, которые растут с увеличением скорости;
  • схема управления для шаговых двигателей изначально является гораздо более сложной, чем для коллекторных, но новые интегральные схемы, например, разработки STMicroelectronics, практически устраняют эти различия;
  • маломощный коллекторный двигатель, например, для недорогой игрушки, может быть наиболее экономичным решением в плане электропроводки и электроники управления (если она есть), но при этом он может обеспечить весьма ограниченную производительность.

Заключение

Бессчетное количество информационных справок о двигателях охватывает академическую теорию, возможные реализации, варианты использования, механические, электрические и термические проблемы, функции привода и элементы управления от простейших до продвинутых. Одним из полезных источников является «An Introduction to Electric Motors» от ST. Для более глубокого ознакомления с шаговыми двигателями и микрошагами, которые не так интуитивно понятны, как коллекторные и бесколлекторные двигатели, смотрите «Application Note AN4923 STSPIN220: Step-Mode Selection and On-the-Fly Switching to Full-Step».

20 сентября 2018

Какой тип маломощного двигателя постоянного тока выбрать из трех существующих? Это определяется поставленной задачей, но, вне зависимости от выбора, у STMicroelectronics найдется микросхема драйвера для любого из них.

Диапазон применений маломощных двигателей постоянного тока (DC) расширился в результате многих факторов. Во-первых, двигатели стали более эффективными и мощными благодаря новым магнитным материалам. Во-вторых, в связи с использованием интеллектуальных микросхем с интегрированными полевыми транзисторами (FET) управление двигателями стало более легким. В-третьих, несмотря на то, что в большинстве приложений интернета вещей (IoT) лишь регистрируются те или иные состояния, а потребности в движении не возникает, рост разнообразия приложений IoT привел к необходимости малогабаритных двигателей.

Что такое маломощный двигатель постоянного тока? Официального определения или стандарта нет, но универсальное понимание в индустрии таково: двигатель со среднеквадратичным (RMS) значением тока привода до 1 А и пиковым значением тока 2 А считается маломощным устройством. Эти цифры могут показаться достаточно большими по сравнению с потреблением соответствующей электроникой миллиамперных токов. Однако многие из вышеуказанных двигателей используются в приложениях с малым коэффициентом заполнения, чьи совокупные потребности в энергии довольно скромны, даже если собственные требования приложений к максимальной мощности намного больше, чем необходимо их электронной составляющей.

Области применения маломощных двигателей разнообразны: от электроники для развлечений – до стандартной продукции и изделий для ответственного применения. Вот несколько сфер, где они используются:

  • беспроводные системы Smart HVAC;
  • регулировка и тонкая настройка производственных процессов;
  • научное приборостроение;
  • игры и развлечения;
  • роботизированные приводы;
  • медицинское оборудование, например — для позиционирования зондов, для контроля потока жидкости и для лабораторной диагностики.

Три основные топологии двигателя

Три часто используемые конфигурации маломощных DC-двигателей – коллекторные, бесколлекторные (BLDC) и шаговые. Каждый из них работает благодаря взаимодействию между токами в катушках (или обмотках) и постоянными магнитами (в большинстве конструкций), что приводит к притяжению/отталкиванию магнитного поля, вызывающему вращение. Все три вида двигателей имеют некоторые сходства, но отличаются методом управления переключением тока, протекающего через обмотки ротора и статора.

Они также отличаются возможностью выполнения определенных задач, качеством этого выполнения и гибкостью управления.

  • Исторически первым был двигатель коллекторного типа. По мере вращения ротора контактные щетки, представляющие собой сплошные контакты, состоящие, как правило, из графита, касаются соответствующих областей на роторе (рисунок 1). По мере вращения ротора изменение точек контакта щетки вызывает изменение направления потока тока и, следовательно, магнитного поля. Затем взаимодействие магнитного поля между ротором и статором меняется на противоположное, что вынуждает ротор продолжать движение.

Рис. 1. Коллекторный двигатель постоянного тока

Данная механическая схема концептуально проста. Однако ее недостаток в том, что щетки изнашиваются и нуждаются в замене, реализация интеллектуального управления сложна, потому что переключить данный двигатель довольно трудно, к тому же, щетки создают электромагнитные помехи (EMI), также известные как радиочастотные помехи (RFI).

В простейшем варианте коллекторный двигатель не нуждается в электронном управлении – он просто работает в зависимости от токовой и механической нагрузок. В других вариантах силовая шина двигателя включается и выключается при помощи транзисторной схемы, что является простейшим вариантом управления. Также возможно использование микросхемы-драйвера для повышения производительности и обеспечения контроля над скоростью и вращательным моментом.

  • В двигателе BLDC механическая коммутация заменена электрической с использованием транзисторов. Чаще всего используются МОП-транзисторы (MOSFET), которые управляются драйвером затвора (в некоторых конструкциях используются биполярные транзисторы с изолированным затвором – IGBT). Отдельный контроллер управляет точным переключением катушки в момент, необходимый для поддержания вращения двигателя на желаемой скорости (рисунок 2).

Рис. 2. Бесколлекторный двигатель постоянного тока

Примечание: двигатели BLDC иногда называют электронно-коммутируемыми (EC) двигателями, что является более точным определением.

В BLDC магнитное поле ротора присутствует всегда, оно генерируется постоянными магнитами. Когда ток направляется от одной фазы двигателя к другой, магнитные поля объединяются, генерируя изменяющееся поле статора.

Управление двигателем производится не только при помощи электроники. Вместо этого переключение может быть сформировано в драйвере затвора с контролируемым временем нарастания и спада для уменьшения EMI/RFI. Основная проблема заключается в том, что более мягкое переключение приводит к потере мощности и снижению КПД двигателя, и в этой ситуации разработчику необходимо найти максимально компромиссное решение. Некоторые новые драйверы затвора используют множество сложных и тонких трюков, чтобы облегчить эту задачу.

  • Шаговый двигатель использует концепцию двигателя BLDC, включая в себя большое количество катушек (или полюсов), расположенных по периферии двигателя (рисунок 3). Путем поочередного включения и выключения этих полюсов индуцируется шаг и вращение ротора в прямом или обратном направлении.
Читайте также:  Телефон филипс xenium v377

Рис. 3. Шаговый двигатель

Полюсов может быть и 16, и 128 (или более), в зависимости от требуемой точности вращения, прямо пропорциональной их количеству. Шаговые двигатели доступны в однополярных двухфазных и биполярных двух-, трех- и пятифазных конфигурациях. Самый распространенный из них – биполярный двухфазный двигатель.

В шаговом двигателе магнитное поле ротора генерируется постоянным магнитом, а магнитное поле статора – током, протекающим в определенной фазе. В результате ротор будет выравниваться в соответствии с магнитным полем статора, чтобы достичь заданного положения.

Шаговый двигатель хорошо подходит для задач, где необходимы быстрые остановка/запуск, позиционирование или движение назад/вперед, однако он не подойдет для долговременной непрерывной работы. Он часто используется в принтерах и приборах с поэтапным позиционированием (это только два из его многочисленных применений). Несмотря на то, что точность позиционирования зависит от числа полюсов, использование усовершенствованного метода, в котором смежные полюсы включаются частично (так называемый «микрошаг»), позволяет более точно управлять переключением и позиционированием.

Для управления двигателем необходима как мощность, так и стратегия

Полная система управления двигателем состоит из нескольких функциональных блоков (рисунок 4):

Рис. 4. Путь сигнала управления двигателем

  • Контроллер. Контроллер решает, что мотор должен делать для выполнения текущей задачи в данный момент времени, и определяет, какая мощность в какой момент необходима для полюсов. Он может представлять собой отдельную интегральную схему с фиксированной функцией или быть частью прошивки более крупной системы.

Если к двигателю подключают контур обратной связи, как сейчас делают многие производители, добавляя датчик положения на вал ротора, то контроллер также оценивает положение и скорость двигателя и определяет соответствующие изменения, необходимые для управления мощностью.

  • Выходной сигнал контроллера подается на драйвер управления затвором, который преобразует низковольтные и слаботоковые команды включения/выключения в более высокие токи (и часто более высокие напряжения), необходимые МОП-транзистору (или IGBT). Довольно часто драйвер гальванически изолирован.
  • МОП-транзисторы (или IGBT) являются фактическими ключами питания, которые управляют подачей тока на катушки двигателя.
  • Катушки двигателя. Ток, протекающий через обмотки катушки двигателя, создает электромагнитное поле, которое взаимодействует со стационарными магнитами в двигателе, заставляя его начать вращение.

Сходства и различия интегральных схем для управления двигателем

Преимущество маломощных двигателей, помимо их скромных потребностей в токе и напряжении, заключается в том, что драйверы затвора MOSFET могут быть интегрированы с контроллерами и оптимизированы для конкретных потребностей. Рассмотрим трио соответствующих предложений от STMicroelectronics. Эти три микросхемы от ST имеют множество базовых характеристик, которые позволяют применять их совместно с различными типами двигателей. Помимо этого, они облегчают моделирование и просты в изучении.

Вот несколько преимуществ, которыми обладают эти изделия:

  • максимальная интеграция с использованием интерфейса микроконтроллера (MCU), логики управления, драйвера и моста МОП-транзистора (требуется только несколько пассивных компонентов и нет необходимости во внешних активных компонентах);
  • малое рабочее напряжение 1,8…10 В, которое хорошо подходит для низковольтных двигателей, в особенности – для работающих от небольших аккумуляторных батарей;
  • высокий выходной ток до 1,3 A (RMS) и 2 A (пиковое значение) для каждого выхода;
  • энергопотребление в режиме ожидания до 80 нA;
  • повышенная надежность благодаря блокировке при падении напряжения (UVLO), тепловой защите и защите от перегрузки по току;
  • небольшой QFN-корпус размером 3×3 мм.

Рассмотрим сходства и различия трех данных микросхем для управления двигателем. STSPIN220, предназначенная для шаговых двигателей, объединяет в себе логику управления, высокую эффективность и малое сопротивление «сток-исток» открытого канала RDS(ON) (рисунок 5). Контроллер реализует управление токовым режимом с помощью широтно-импульсной модуляции (PWM) с программируемым временем выключения. STSPIN220 поддерживает разрешение 256 микрошагов на один полный шаг, что позволяет сделать движение максимально плавным.

Рис. 5. Микросхема STSPIN220 для управления шаговым двигателем

Микросхемы, аналогичные модели STSPIN220:

  • STSPIN230 – монолитный драйвер для трехфазных двигателей BLDC;
  • STSPIN240 – монолитный драйвер для двух независимых двигателей постоянного тока;
  • STSPIN250 – монолитный драйвер для одного двигателя постоянного тока.

Примечание: драйвер STSPIN250 предназначен для одного двигателя в отличие от двухмоторного драйвера STSPIN240. STSPIN250 может обеспечивать более высокий ток 2,6 А (среднеквадратичное значение) и 4 А (пиковое значение).

Все эти интегральные схемы имеют максимально схожий внешний интерфейс и оперативные команды, функционально отличаются лишь их интерфейсы со стороны двигателя.

Делаем выбор

Решение о выборе типа двигателя является простым и сложным одновременно. Даже при существовании основных принципов выбора могут возникнуть ситуации, которые будут исключением из правил. Каждый тип двигателя отличается характеристиками скорости, угла поворота против крутящего момента, остановки. При выборе необходимо сопоставить желаемые функции и ограничения готового устройства с параметрами двигателя.

В большинстве случаев коллекторный и бесколлекторный двигатели не подходят для решений, в которых необходим шаговый вариант. Он лучше подходит для постоянного чередования запуска/остановки/позиционирования, в то время как первые два более пригодны для непрерывной работы. При выборе между коллекторным и бесколлекторным двигателями рассмотрите следующие аспекты:

  • коллекторные двигатели имеют меньший срок службы, чем двигатели BLDC; в первом случае срок службы зависит от износа подшипников и щеточного механизма, во втором срок ограничен только износом подшипников. Кроме того, щетки, быстро собирающие проводящую пыль, могут загрязнять другие поверхности;
  • высококачественные коллекторные двигатели могут достигать скорости 10 000 об/мин, в то время как конструкции двигателей BLDC позволяют увеличить эту скорость в 5 или даже в 10 раз;
  • коллекторные двигатели могут работать непосредственно от источника питания и, следовательно, нуждаются только в двух проводах, в то время как двигатели BLDC нуждаются в электронной коммутации, и в этом случае необходимо не менее трех проводов плюс провода датчика;
  • КПД обоих типов примерно одинаков, а вот источники потерь в них различаются. Для коллекторных двигателей большая их часть возникает в обмотках и при трении, связанном со щеточным механизмом, в то время как двигатели BLDC испытывают те же потери в обмотках, плюс дополнительные потери от вихревых токов, которые растут с увеличением скорости;
  • схема управления для шаговых двигателей изначально является гораздо более сложной, чем для коллекторных, но новые интегральные схемы, например, разработки STMicroelectronics, практически устраняют эти различия;
  • маломощный коллекторный двигатель, например, для недорогой игрушки, может быть наиболее экономичным решением в плане электропроводки и электроники управления (если она есть), но при этом он может обеспечить весьма ограниченную производительность.

Заключение

Бессчетное количество информационных справок о двигателях охватывает академическую теорию, возможные реализации, варианты использования, механические, электрические и термические проблемы, функции привода и элементы управления от простейших до продвинутых. Одним из полезных источников является «An Introduction to Electric Motors» от ST. Для более глубокого ознакомления с шаговыми двигателями и микрошагами, которые не так интуитивно понятны, как коллекторные и бесколлекторные двигатели, смотрите «Application Note AN4923 STSPIN220: Step-Mode Selection and On-the-Fly Switching to Full-Step».

Этой статьёй я начинаю цикл публикаций о бесколлекторных двигателях постоянного тока. Доступным языком опишу общие сведения, устройство, алгоритмы управления бесколлекторным двигателем. Будут рассмотрены разные типы двигателей, приведены примеры подбора параметров регуляторов. Опишу устройство и алгоритм работы регулятора, методику выбора силовых ключей и основных параметров регулятора. Логическим завершением публикаций будет схема регулятора.

Бесколлекторные двигатели получили широкое распространение благодаря развитию электроники и, в том числе, благодаря появлению недорогих силовых транзисторных ключей. Также немаловажную роль сыграло появление мощных неодимовых магнитов.

Читайте также:  Электронный стабилизатор для смартфона

Однако не стоит считать бесколлекторный двигатель новинкой. Идея бесколлекторного двигателя появилась на заре электричества. Но, в силу неготовности технологий, ждала своего времени до 1962 года, когда появился первый коммерческий бесколлекторный двигатель постоянного тока. Т.е. уже более полувека существуют различные серийные реализации этого типа электропривода!

Немного терминологии

Бесколлекторные двигатели постоянного тока называют так же вентильными, в зарубежной литературе BLDCM (BrushLes Direct Current Motor) или PMSM (Permanent Magnet Synchronous Motor).

Конструктивно бесколлекторный двигатель состоит из ротора с постоянными магнитами и статора с обмотками. Обращаю Ваше внимание на то, что в коллекторном двигателе наоборот, обмотки находятся на роторе. Поэтому, далее в тексте ротор – магниты, статор – обмотки.

Для управления двигателем применяется электронный регулятор. В зарубежной литературе Speed Controller или ESC (Electronic speed control).

Что такое бесколлекторный двигатель?

Обычно люди, сталкиваясь с чем-то новым, ищут аналогии. Иногда приходится слышать фразы “ну это как синхронник”, или еще хуже “он похож на шаговик”. Поскольку большинство бесколлекторных двигателей трехфазные, это еще больше путает, что приводит к неправильному мнению о том, что регулятор “кормит” двигатель переменным 3-x фазным током. Все вышесказанное соответствует действительности только отчасти. Дело в том, что синхронными можно назвать все двигатели кроме асинхронных. Все двигатели постоянного тока являются синхронными с самосинхронизацией, но их принцип действия отличается от синхронных двигателей переменного тока, у которых самосинхронизация отсутствует. Как шаговый бесколлекторный двигатель тоже, наверное, сможет работать. Но тут такое дело: кирпич он тоже может летать… правда, недалеко, ибо для этого не предназначен. В качестве шагового двигателя больше подойдет вентильный реактивный двигатель.

Попробуем разобраться, что собой представляет бесколлекторный двигатель постоянного тока (Brushles Direct Current Motor). В самой этой фразе уже кроется ответ – это двигатель постоянного тока без коллектора. Функции коллектора выполняет электроника.

Преимущества и недостатки

Из конструкции двигателя удаляется довольно сложный, требующий обслуживания тяжелый и искрящий узел – коллектор. Конструкция двигателя существенно упрощается. Двигатель получается легче и компактнее. Значительно уменьшаются потери на коммутацию, поскольку контакты коллектора и щетки заменяются электронными ключами. В итоге получаем электродвигатель с наилучшими показателями КПД и показателем мощности на килограмм собственного веса, с наиболее широким диапазоном изменения скорости вращения. На практике бесколлекторные двигатели греются меньше, чем их коллекторные братья. Переносят большую нагрузку по моменту. Применение мощных неодимовых магнитов сделали бесколлекторные двигатели еще более компактными. Конструкция бесколекторного двигателя позволяет эксплуатировать его в воде и агресивных средах (разумеется, только двигатель, регулятор мочить будет очень дорого). Бесколлекторные двигатели практически не создают радиопомех.

Единственным недостатком считают сложный дорогостоящий электронный блок управления (регулятор или ESC). Однако, если вы хотите управлять оборотами двигателя, без электроники никак не обойтись. Если вам не надо управлять оборотами бесколлекторного двигателя, без электронного блока управления все равно не обойтись. Бесколлекторный двигатель без электроники – просто железка. Нет возможности подать на него напряжение и добиться нормального вращения как у других двигателей.

Что происходит в регуляторе бесколлекторного двигателя?

Для того чтобы понять, что происходит в электронике регулятора, управляющего бесколлекторным двигателем, вернемся немного назад и сначала разберемся как работает коллекторный двигатель. Из школьного курса физики помним, как магнитное поле действует на рамку с током. Рамка с током вращается в магнитном поле. При этом она не вращается постоянно, а поворачивается до определенного положения. Для того чтобы происходило непрерывное вращение, нужно переключать направление тока в рамке в зависимости от положения рамки. В нашем случае рамка с током – это обмотка двигателя, а переключением занимается коллектор – устройство со щетками и контактами. Устройство простейшего двигателя смотри на рисунке.

То же самое делает и электроника, управляющая бесколлекторным двигателем – в нужные моменты подключает постоянное напряжение на нужные обмотки статора.

Датчики положения, двигатели без датчиков

Из вышесказанного важно уяснить, что подавать напряжение на обмотки двигателя нужно в зависимости от положения ротора. Поэтому электроника должна уметь определять положение ротора двигателя. Для этого применяются датчики положения. Они могут быть различного типа, оптические, магнитные и т.д. В настоящее время очень распространены дискретные датчики на основе эффекта Холла (например SS41). В трехфазном бесколлекторном двигателе используется 3 датчика. Благодаря таким датчикам электронный блок управления всегда знает, в каком положении находится ротор и на какие обмотки подавать напряжение в каждый момент времени. Позже будет рассмотрен алгоритм управления трехфазным бесколлекторным двигателем.

Существуют бесколлекторные двигатели, которые не имеют датчиков. В таких двигателях положение ротора определяется путем измерения напряжения на незадействованной в данный момент времени обмотке. Эти методы также будут рассмотрены позднее. Следует обратить внимание на существенный момент: этот способ актуален только при вращении двигателя. Когда двигатель не вращается или вращается очень медленно, такой метод не работает.

В каких случаях применяют бесколлекорные двигатели с датчиками, а в каких – без датчиков? В чем их отличие?

Двигатели с датчиками положения более предпочтительны с технической точки зрения. Алгоритм управления такими двигателями значительно проще. Однако есть и свои минусы: требуется обеспечить питание датчиков и прокладку проводов от датчиков в двигателе к управляющей электронике; в случае выхода со строя одного из датчиков, двигатель прекращает работу, а замена датчиков, как правило, требует разборки двигателя.

В тех случаях, когда конструктивно невозможно разместить датчики в корпусе двигателя, используют двигатели без датчиков. Конструктивно такие двигатели практически не отличаются от двигателей с датчиками. А вот электронный блок должен уметь управлять двигателем без датчиков. При этом блок управления должен соответствовать характеристикам конкретной модели двигателя.

Если двигатель должен стартовать с существенной нагрузкой на валу двигателя (электротранспорт, подъёмные механизмы и т.п.) – применяют двигатели с датчиками.
Если двигатель стартует без нагрузки на валу (вентиляция, воздушный винт, применяется центробежная муфта сцепления и т.п.), можно применять двигатели без датчиков. Запомните: двигатель без датчиков положения должен стартовать без нагрузки на валу. Если это условие не соблюдается, следует использовать двигатель с датчиками. Кроме того, в момент старта двигателя без датчиков возможны вращательные колебания оси двигателя в разные стороны. Если это критично для Вашей системы, применяйте двигатель с датчиками.

Три фазы

Трехфазные бесколлекторные двигатели приобрели наибольшее распространение. Но они могут быть и одно, двух, трех и более фазными. Чем больше фаз, тем более плавное вращение магнитного поля, но и сложнее система управления двигателем. 3-х фазная система наиболее оптимальна по соотношению эффективность/сложность, поэтому и получила столь широкое распространение. Далее будет рассматриваться только трехфазная схема, как наиболее распространенная. Фактически фазы – это обмотки двигателя. Поэтому если сказать “трехобмоточный”, думаю, это тоже будет правильно. Три обмотки соединяются по схеме “звезда” или “треугольник”. Трехфазный бесколлекторный двигатель имеет три провода – выводы обмоток, см. рисунок.

Двигатели с датчиками имеют дополнительных 5 проводов (2-питание датчиков положения, и 3 сигналы от датчиков).

В трехфазной системе в каждый момент времени напряжение подается на две из трех обмоток. Таким образом, есть 6 вариантов подачи постоянного напряжения на обмотки двигателя, как показано на рисунке ниже.

Это позволяет создать вращающееся магнитное поле, которое будет проворачиваться “шагами” на 60 градусов при каждом переключении. Но не будем забегать наперед. В следующей статье будут рассмотрены устройство бесколлекторного двигателя, варианты расположения магнитов, обмоток, датчиков и т.д., а позже будут рассмотрены алгоритмы управления бесколлекторными двигателями.

Бесколлекторные моторы “на пальцах”
Что такое бесколлекторные моторы и как управлять бесколлекторными моторами:

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector