No Image

Шестиградусная зона в проекции гаусса крюгера

СОДЕРЖАНИЕ
0 просмотров
22 января 2020

Проекция Гаусса — Крюгера — поперечная цилиндрическая равноугольная картографическая проекция, разработанная немецкими учёными Карлом Гауссом и Луи Крюгером [1] . Эта проекция является вариантом поперечной проекции Меркатора [2] .

Названия «проекция Гаусса — Крюгера» и «поперечная проекция Меркатора» также используются как взаимозаменяемые синонимы [2] [3] .

Применение этой проекции даёт возможность практически без существенных искажений изобразить довольно значительные участки земной поверхности и, что очень важно, построить на этой территории систему плоских прямоугольных координат. Эта система является наиболее простой и удобной при проведении инженерных и топографо-геодезических работ [4] .

История [ править | править код ]

Первый вариант поперечной цилиндрической равноугольной проекции был представлен в 1772 году немецким учёным Иоганном Генрихом Ламбертом [5] . Аналогично простейшему варианту проекции Меркатора эта проекция представляет собой проекцию сферы на цилиндр [5] , однако в отличие от классической проекции Меркатора, здесь цилиндр ориентирован продольно: не вдоль экватора, а вдоль одного из меридианов [2] .

Вариант поперечной цилиндрической равноугольной проекции основанный на проекции эллипса был опубликован в 1825 году Карлом Гауссом [6] . Для обозначения этой проекции использовались названия: проекция Гаусса-Ламберта, конформная проекция Гаусса, а также Ганноверская проекция Гаусса, так как она использовалась при обработке данных ганноверской триангуляции 1821-1825 годов [3] [1] . Во второй половине 19 века для обозначения этой проекции также стали использовать название «поперечная проекция Меркатора» (англ. transverse Mercator projection ) [7] .

Впоследствии немецкий топограф Оскар Шрайбер, основываясь на работах Гаусса, разработал новый вариант проекции, которая получила название «проекция Гаусса-Шрайбера». Эта проекция использовалась в работах над Прусским кадастром в 1876-1923 годах. [3]

В 1912 году Луи Крюгер опубликовал труд, продолжающий работы Гаусса и Шрайбера [8] .

Принцип и применение [ править | править код ]

В результате исследований было установлено, что оптимальные размеры территории изображения должны ограничиваться меридианами, отстоящими друг от друга на 6° (хотя в принятой в Германии первоначальной версии этой проекции меридианы отстоят на 3°). Эта фигура получила название сфероидального двуугольника. Его размеры: 180° по широте (от полюса до полюса), и 6° по долготе. Несмотря на то, что площадь зоны в проекции (зоны Гаусса) будет увеличенной, относительные искажения длин в отдалённых от среднего меридиана точках экватора на границе зоны составит 1/800. Максимальные искажения длин в пределах зоны составляет +0,14 %, а площадей — +0,27 %, а в пределах России — ещё меньше (примерно 1/1400). Таким образом, искажения длин и площадей в пределах зоны меньше, чем искажения, возникающие при печати карты за счёт деформации бумаги. Изображение зоны в проекции Гаусса практически не имеет искажений и допускает любые карто- и морфометрические работы.

Точкой отсчёта принимается пересечение выбранного осевого меридиана с экватором. Для этого вся земная поверхность разбита на зоны ограниченные меридианами отстоящими друг от друга на 6°, с порядковой нумерацией начиная от Гринвичского меридиана на восток. Всего 60 зон. К примеру 8-я зона находится между меридианами 42° и 48° восточной долготы, а 58-я зона соответственно находится между меридианами 12° и 18° западной долготы.

Координаты отсчитываются от середины зоны, при этом во избежание отрицательных значений координат, к значению абсциссы прибавляются 500 км. К примеру координаты условной точки М (смотреть пример на иллюстрации) с координатами 50° 28′ 43″ с.ш. и 31° 32′ 46″ в.д. находятся в 6-й зоне (между 30° и 36° восточной долготы), приблизительно севернее на 500 метров и восточнее на 700 метров от пересечения горизонтальной километровой линии 5594 (севернее экватора на 5594 километра) и вертикальной километровой линии 6396 (западнее середины 6-й зоны на 500-396=104 км). Соответственно запись в прямоугольных координатах условной точки М будет следующей: x = 6396700 и y = 5594500 [9] .

Проекция Гаусса-Крюгера – это поперечная цилиндрическая равноугольная картографическая проекция, разработанная немецкими учёными Гауссом и Крюгером. Применение этой проекции даёт возможность практически без существенных искажений изобразить довольно значительные участки земной поверхности и, что очень важно, построить на этой территории систему плоских прямоугольных координат.

В 1928 г. на III геодезическом совещании для всех геодезических и топографических работ в СССР была принята проекция Гаусса-Крюгера на эллипсоиде Бесселя. В этой проекции начали создавать топографические карты масштабов крупнее 1:500 000, а с 1939 г. проекция Гаусса-Крюгера стала применяться и для карты масштаба 1:500 000. В апреле 1946 г. постановлением правительства были утверждены размеры референц эллипсоида Крассовского и новые исходные даты, характеризующие систему координат 1942 г.

В проекции Гаусса-Крюгера поверхность эллипсоида на плоскости отображается по меридианным зонам, ширина которых равна 6° (для карт масштабов 1:500 000-1:10 000) и 3° (для карт масштабов 1:5 000- 1:2 000). Меридианы и параллели изображаются кривыми, симметричными относительно осевого меридиана зоны и экватора, однако их кривизна настолько мала, что западная и восточная рамки карты изображаются прямыми линиями. Параллели, совпадающие с северной и южной рамками карт, изображаются прямыми на картах крупных масштабов (1:2 000-1:50 000), на картах мелких масштабов они изображаются кривыми. Начало прямоугольных координат каждой зоны находится в точке пересечения осевого меридиана зоны с экватором. В России стране принята нумерация зон, отличающаяся от нумерации колонн карты масштаба 1:1 000000 на тридцать единиц, то есть крайняя западная-зона с долготой осевого меридиана L=21 имеет номер 4, к востоку номера зон возрастают. Номер зоны N и долгота осевого меридиана L° в градусах связаны между собой равенством L° == 6N- 3.

Читайте также:  Тв приставка стандарт ростелеком описание

Территория России находится в северном полушарии, поэтому координаты ^ Х всех точек имеют положительное значение. Координаты Y имеют отрицательные значения левее осевого меридиана и положительные правее его. Чтобы исключить из обращения отрицательные координаты и облегчить пользование прямоугольными координатами на топографических картах, ко всем координатам Y добавляют постоянное число 500 000 м. Для указания зоны, к которой относятся координаты, к значению Y слева приписывают номер зоны. Например, запись координаты Y" 30 786 543 м означает, что точка находится в 30-й зоне, ее реальная координата равна 786 000- 500 000 = 286 543 м, то есть она расположена правее осевого меридиана 30-й зоны. Запись координаты Y= 8 397 720 м означает, что точка находится в 8-й зоне, ее реальная координата равна 397 720- 500 000 = 102 280 м, она расположена левее осевого меридиана 8-й зоны.

Рисунок 29. Проекция Гаусса-Крюгера

При создании любых карт важное значение имеет вопрос о выборе картографической проекции, которая обеспечит возможность оптимального решения по этим картам различных задач. Какая проекция будет использована при работе в первую очередь зависит от назначения карты и её масштаба, которыми часто обусловливается характер допускаемых искажений в избираемой проекции. Так же существуют методики по выбору проекций.

Карты крупных и средних масштабов, предназначенные для решения метрических задач, обычно составляют в равноугольных проекциях, а карты мелких масштабов, используемые для общих обозрений и определения соотношения площадей каких-либо территорий- в равновеликих. При выборе проекций начинают с простейших, затем переходят к более сложным проекциям, даже, возможно, модифицируя их.

Для изображения России удобны конические проекции, в которых воображаемый конус рассекает земной шар по параллелям 47 и 62° северной широты: на создаваемых подобным образом картах это так называемые линии нулевых искажений. Вблизи них сжатия и растяжения невелики, что удобно, поскольку между ними находятся самые густонаселённые области. Карты Северного Ледовитого океана или Антарктиды чаще всего составляются в азимутальной проекции, расположив воображаемую вспомогательную плоскость так, чтобы она касалась полюса. Тогда растяжения в полярных областях земли окажутся минимальными. В современной картографии достаточно большой набор проекций для любых карт (планета в целом, материки и океаны, страны и т. д.) и всевозможного назначения.

Для того, чтобы перейти из одной системы координат в другую используется набор параметров, которые определяют отличие эллипсоида на котором базируется одна СК от другого. Это так называемые линейные элементы трансформирования определяющие сдвиг центра масс эллипсоида относительно общеземного и угловые элементы трансформирования определяющие соответственно поворот эллипсоида относительно общеземного. Если видно, что какие то данные равномерно смещены относительно других слоев на одинаковую величину, то скорее всего используются данные находящиеся в разных системах координат.

Применяемая в настоящее время в Украине для карт масштабов 1 : 500 000 и крупнее равноугольная поперечно-цилиндрическая проекция названа именем знаменитого немецкого математика Гаусса, разработавшего в 1825 году общую теорию равноугольного изображения одной поверхности на другой.

Проекция Гаусса является проекцией эллипсоида на плоскость, и ее определяют следующие условия:

— изображение осевого (среднего) меридиана в виде прямой, по отношению к которой все меридианы и параллели располагаются симметрично;

— сохранение длины осевого меридиана.

Рабочие формулы равноугольной проекции эллипсоида без промежуточного перехода на шар дал Л Крюгер в 1912 году, вследствие чего эту проекцию в литературе также называют проекцией Гаусса Крюгера.

В поперечно-цилиндрической проекции Гаусса в отличие от равноугольной цилиндрической проекции Меркатора проектирование производится на поверхность цилиндра, касающегося поверхности земного эллипсоида (а не шара) не по экватору, а по меридиану (рис. 1). Поэтому и масштаб сохраняется не по экватору НОН1, а по меридиану касания РОР1. При проектировании цилиндр берется с эллиптическим поперечным сечением.

Рис. 1. Цилиндр, касающийся земного эллипсоида по меридиану

Искажения в проекции Гаусса

Искажения в проекции Гаусса нарастают с удалением от осевого меридиана к западу и востоку, а изоколы имеют вид прямых, параллельных меридиану касания (осевому меридиану).

Взаимно – перпендикулярными прямыми в проекции Гаусса изображаются не меридианы и параллели, а дуги малых кругов ABC и DEP (альмукантараты) и дуги больших кругов HQ, НК, НО, HL, перпендикулярные к осевому меридиану (вертикалы). Если альмукантараты ABC, DEF проведены на эллипсоиде через одинаковые промежутки, а вертикалы делят осевой меридиан на равные отрезки LO=OK=KQ, то они, по аналогии с проекцией Меркатора, образуют на карте координатную сеть прямоугольников, как показано на рис. 2. Линиями абсцисс здесь являются изображения альмукантаратов, а линиями ординат изображения вертикалов.

Также по аналогии с проекцией Меркатора с известным допуском можно утверждать, что масштаб в равноугольной поперечно-цилиндрической проекции Гаусса в любой точке карты по любому направлению выражается формулой

Рис. 2 Координаты точки в проекции Гаусса

φ’- центральный угол, измеряющий альмукантарат данной точки.

Угол , выраженный в радианной мере, равен длине стягивающей его дуги вертикала, деленной на радиус шара (в данном случае эллипсоид можно приравнять к шару). Если стягивающую дугу угла обозначить через у0, то

Где R — радиус земного шара. Разложив В ряд, получим

(41)

Эта формула, так же как и формула , показывает, что в проекции Гаусса искажения нарастают с удалением от осевого меридиана, т. е. с увеличением на карте ординаты у.

Меридианы и параллели, за некоторыми исключениями, имеют в проекции Гаусса вид сложных кривых (рис. 3). Экватор, средний осевой) меридиан и меридианы, удаленные от среднего на 90° долготы, являются прямыми линиями.

Читайте также:  Число степеней свободы молекул идеального газа

Рис. 3. Картографическая сетка в проекции Гаусса

Проекция Гаусса при сплошном изображении больших территорий, вытянутых по долготе, дает большие искажения (точки, удаленные по экватору от осевого меридиана на 90° долготы, уходят в бесконечность). Поэтому в целях уменьшения искажений она применяется по зонам, ограниченным линиями меридианов. Каждая зона изображается на плоскости в отдельности, причем за ось X принимается изображение среднего (осевого) меридиана каждой зоны, а за ось У — изображение экватора. Протяженность зон по долготе берется такой, чтобы искажения на их краях были пренебрегаемо малы.

При удалении к западу или востоку от осевого меридиана на 3° относительное искажение длин достигает на экваторе 1/750, а на широте 45° — 1/1500. Такое искажение допустимо для карт масштабов 1: 25 000 и мельче. Однако с удалением от осевого меридиана зоны больше чем на 3° линейные искажения начинают, быстро расти, и становятся недопустимыми. Исходя из этого, в СНГ протяженность зон по долготе установлена в 6°.

Нумерация шестиградусных зон в проекции Гаусса приведена в таблице 5.

Нумерация шестиградусных зон в проекции Гаусса.

Долгота осевого меридиана от Гринвича

Номер колонны листов миллионной карты

Долгота осевого меридиана от Гринвича

Номер колонны листов миллионной карты

Примечание: При выполнении специальных съемок в масштабах 1: 25 000 и крупнее техническими инструкциями допускается применение трехградусных и даже более узких зон, в зависимости от масштаба съемки и предъявляемых к ней требований.

Рис 50. Изображение зон в проекции Гаусса

Изображение зон на плоскости показано на рис. 4. Зная номер зоны, можно определить долготу ее осевого (среднего) меридиана по формуле

Где П — номер зоны,

L0— долгота осевого меридиана.

Наоборот, зная долготу осевого меридиана, легко определить номер зоны по формуле

Абсциссы х в каждой зоне отсчитываются от экватора к северу со знаком плюс, а к югу—со знаком минус. Для всей территории Украины абсциссы х положительны, поэтому знак плюс перед ними не ставится. Ординаты у отсчитываются от осевого меридиана каждой зоны со знаком плюс к востоку и со знаком минус к западу. Чтобы избежать отрицательных значений ординат, их условно увеличивают путем алгебраического прибавления на 500000 м. Кроме того, впереди полученной суммы ставят номер зоны, чтобы знать, в какой зоне находится данная точка. Например, некоторая точка находится в зоне 7 и имеет ординату

У = — 243 435,15 м.

Согласно указанному правилу преобразованное, условное значение ординаты будет

У = 7 256 564,85 м.

Таким образом, для вычисления условной ординаты любой точки должен быть известен номер зоны, в которой точка находится.

Рис. 5,6 Основные обозначения на эллипсоиде и плоскости в проекции Гаусса.

Номер зоны можно определить, зная долготу данной точки или номенклатуру листа какой-либо топографической или обзорно-топографической карты, на котором она расположена.

Для проекции Гаусса приняты следующие основные обозначения (рис. 5 —на эллипсоиде и рис. 6 — на плоскости):

В — геодезическая широта произвольной точки М на эллипсоиде;

L — геодезическая долгота от Гринвича той же точки на эллипсоиде;

L0 — долгота от Гринвича осевого меридиана;

L = L L0 — разность долгот меридиана данной точки и осевого меридиана;

А — азимут геодезической линии на эллипсоиде;

Хв — длина меридиана от экватора до параллели с широтой данной точки;

х и у — прямоугольные координаты Гаусса соответствующей

Точки М1 на плоскости;

— гауссово сближение меридианов;

— дирекционный угол хорды геодезической линии M1N1´ На плоскости;

Рис. 7. Связь между азимутом, дирекционным углом и сближением меридианов в проекции Гаусса.

— поправка за кривизну изображения геодезической линии M1N1´ (кривой) на плоскости;

N—радиус кривизны первого вертикала в точке с широтой В.

Прямоугольными координатами Гаусса любой точки земного эллипсоида называются плоские прямоугольные координаты изображения соответствующей точки на плоскости в проекции Гаусса.

Гауссовым сближением меридианов в данной точке называется угол, образованный на плоскости меридианом, проходящим через данную точку, и линией, параллельной осевому меридиану.

Геодезической линией между двумя точками на эллипсоиде называется линия кратчайшего расстояния на поверхности эллипсоида между этими точками. Геодезическая линия в проекции Гаусса изображается в виде кривой, образующей со своей хордой некоторый угол 5, называемый поправкой за кривизну кривой. Угол 3 мал и учитывается лишь при обработке триангуляции.

Дирекционным углом какого-либо направления на плоскости называется угол между положительным направлением оси X и данным направлением. Этот угол изменяется от 0 до 360° и отсчитывается от положительного направления оси X по ходу часовой стрелки. Связь между азимутом, дирекционным углом и гауссовым сближением меридианов произвольной точки М1 на плоскости легко определяется из рис. 53.

Когда точка М1 расположена к востоку от осевого меридиана

Когда точка М1 расположена к западу от осевого меридиана

и

Ниже без вывода приводятся формулы, определяющие проекцию Гаусса

(42)

(43)

В этих формулах

, где

L" — разность долгот, выраженная в секундах.

Формулы для вычисления гауссова сближения меридианов И масштаба изображения m по геодезическим координатам данной точки имеют вид

(44)

(45)

Исследования формул (42) и (43) показывают, что при вычислении х и у в шестиградусных зонах для широт в пределах территории СССР члены формул, содержащие L"6, L"5 и L"4 не превышают соответственно 0,005, 0,05 и 3,0 м. Следовательно, при вычислениях х и у для картографических целей (составления карт масштабов 1:100000 и мельче) в правых частях этих формул достаточно удерживать лишь первые два члена.

Читайте также:  Увеличиваем сигнал wi fi

Исходя из этих же соображений, гауссово сближение меридианов можно вычислять по приближенной формуле

А масштаб изображения в любой точке карты по формуле

(4б)

Формула (46) получается из формулы (41), если в ней отбросить третий и последующие члены и заменить дугу у0 на шаре ординатой у на плоскости; в пределах шестиградусной зоны

Трапеция в проекции Гаусса

Рис.8 Трапеция в проекции Гаусса

Значение Отличается от значения На весьма незначительную величину.

Обычно прямоугольные координаты Гаусса вычисляют не по формулам (42) и (43), а с помощью специальных таблиц. Таблицы для логарифмического вычисления координат Гаусса-Крюгера издания 1946 года, таблицы координат Гаусса-Крюгера издания 47 года. В вводных частях этих таблиц дается подробное их описание, приводятся пояснения к пользованию таблицами и примеры вычисления координат.

В отличие от многогранной проекции, ранее применявшейся у нас для топографических карт, в проекции Гаусса вследствие увеличения искажений в оба направления от осевого меридиана трапеция топографической или обзорно-топографической карты, сторонами которой являются отрезки меридианов и параллелей, не представляет собой геометрически правильной фигуры. Вогнутость меридианов в ней направлена в сторону осевого меридиана (рис. 8). Однако уклонение меридианов от прямой значительно меньше графической точности, которая требуется при построении трапеций карт масштабов 1:500 000 и крупнее. Поэтому боковые стороны трапеций этих карт в проекции Гаусса изображаются прямыми линиями.

Уклонение параллелей от прямой начинает практически ощущаться на трапециях карт масштабов 1:100000 и мельче (с разностью долгот крайних меридианов в 30′ и больше). Исходя из этого, каждая параллель (северная или южная сторона) трапеции наносится: для карты масштаба 1:100 000 по координатам трех точек, для карты масштаба 1:200 000 по координатам пяти точек и для карты масштаба 1:500 000 по координатам семи точек. В соответствии с этим для построения трапеций карт масштабов 1:100000, 1:200 000 и 1:500 000 необходимо знать координаты соответственно шести, десяти и четырнадцати точек. Трапеции карт масштабов 1: 50 000 и крупнее строятся по координатам четырех точек (вершин углов).

На рис. 9 показаны схематические изображения трапеций карт масштабов 1 : 10000—1:500000. Для трапеций карт масштабов 1:100000, 1:200000 и 1:500000 указаны промежуточные точки, по координатам которых наносятся параллели, и приведены размеры трапеций в градусной мере (И—размеры трапеции соответственно по широте и долготе).

Рис. 55. Схематические изображения трапеций с указанием промежуточных точек, по координатам которых наносятся параллели на картах в проекции Гаусса.

Прямоугольные координаты Гаусса вершин углов трапеций и промежуточных точек выбираются из специальных таблиц (Таблицы координат Гаусса-Крюгера издания 1947 года). Построение трапеции производится путем нанесения этих точек обычным способом

На координатографе или с помощью штангенциркуля и масштабной линейки. В последнем случае вначале строится квадрат или прямоугольник, а затем от его сторон по координатам наносятся вершины углов трапеции и промежуточные точки, если последние необходимы.

Для удобства обработки геодезических измерений, выполненных на стыке двух смежных зон, установлено взаимное перекрытие координатных зон, по долготе. При этом западная зона перекрывает восточную на 30′, а восточная перекрывает западную на 7′,5. В соответствии с этим в каталогах геодезических пунктов для всех пунктов, находящихся в полосе перекрытия, приводятся прямоугольные координаты для обеих зон. В отдельных случаях может возникнуть необходимость в координатах смежной зоны для пунктов, находящихся за пределами полосы перекрытия зон. В этих случаях производится преобразование прямоугольных координат пунктов из одной шестиградусной зоны в другую, смежную шестиградусную зону. Обычно выполняется с помощью специальных таблиц (Таблицы для перевычисления прямоугольных координат Гаусса-Крюгера из одной шестиградусной зоны в другую шестиградусную зону издания 1947 года). Таблицы для перевычисления прямоугольных координат Гаусса-Крюгера из одной шестиградусной зоны в смежную шестиградусную зону издания 1946 года ) и т. д. В вводных частях этих таблиц даются пояснения к пользованию ими и приводятся примеры перевычисления координат.

Для решения ряда практических задач, в частности военных, на топографических картах наносится сетка прямоугольных координат Гаусса, или координатная сетка. Она представляет собой сеть квадратов, образуемых линиями, параллельными осевому меридиану зоны, и линиями, перпендикулярными к нему. В каждой зоне координатная сетка наносится от экватора и осевого меридиана данной зоны. Наличие координатной сетки значительно облегчает определение координат точек по карте и нанесение точек на карту по координатам.

Применяемая для карт масштабов 1:10000 — 1:500 000 проекция Гаусса имеет ряд преимуществ по сравнению с применявшейся ранее у нас многогранной проекцией. Первым преимуществом этой проекции является ее связь на картах с координатной сеткой и прямоугольными координатами геодезических пунктов. Нанесению вершин углов трапеции и геодезических пунктов в проекции Гаусса предшествует построение координатной сетки. При применении многогранной проекции сначала строится трапеция, а затем уже от вершин ее углов наносится сетка прямоугольных координат Гаусса. Это снижает графическую точность нанесения геодезических пунктов.

Вторым преимуществом проекции Гаусса является теоретическая возможность склейки какого угодно большого количества листов карт в пределах шестиградусной зоны.

Наконец, третьим преимуществом проекции Гаусса является ее равноугольность. В сравнении с другими проекциями, применяемыми для топографических и обзорно-топографических карт, проекция Гаусса имеет то преимущество, что в ней искажения учитываются по довольно простым формулам.

Кроме Украины проекция Гаусса применяется для топогеодезических и картографических работ в странах (Финляндия, Англия, Турция и т. д.). Однако она не является единой и применяется, как правило, в трехградусных зонах.

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector