No Image

Ширина интерференционной полосы это

0 просмотров
22 января 2020

Кольца Ньютона

При освещении пленки (пластинки) с переменной толщиной параллельным пучком света на ее поверхности возникает система интерференционных полос. Каждая из полос возникает за счет отражения от мест пластинки, имеющих одинаковую толщину (в общем случае толщина пластинки может изменяться произвольно). Интерференционные полосы, возникающие в результате интерференции от мест одинаковой толщины, называютсяполосами равной толщины.Примером полос равной толщины

являются кольца Ньютона. Кольца Ньютона наблюдаются при отражении света от соприкасающихся друг с другом плоскопараллельной толстой стеклянной пластинки и плоско-выпуклой линзы с большим радиусом кривизны (рис. 4.5). Роль тонкой пленки, от поверхностей которой отражаются когерентные волны, играет воздушный зазор (c изменяющейся толщиной b) между пластиной и линзой. При нормальном падении света полосы равной толщины имеют вид концентрических окружностей, при наклонном падении – эллипсов.

Радиусы светлых и темных колец Ньютона найдем по формуле:

, m=1, 2, 3

Четным m соответствуют радиусы светлых колец, нечетным m – радиусы темных колец. Значению m = 1 соответствует r = 0, т.е. точка в месте касания пластинки и линзы. В этой точке наблюдается минимум интенсивности, обусловленный изменением фазы на p при отражении световой волны от пластинки.

Полосы равной толщины могут наблюдаться также в клинообразной пластинке. Тогда интерференционные полосы параллельны ребру клина.

Просветление оптики

Интерференция при отражении от тонких пленок лежит в основе просветления оптики. Прохождение света через каждую преломляющую поверхность линзы сопровождается отражением примерно 4 % падающего света. В сложных объективах такие отражения совершаются многократно, и суммарная потеря светового потока достигает заметной величины. Отражения от поверхностей линз приводят к возникновению бликов. В просветленной оптике для устранения отражения света на каждую свободную поверхность линзы наносится тонкая пленка вещества с показателем преломления иным, чем у линзы. Толщина пленки подбирается так, чтобы волны, отраженные от обеих ее поверхностей, погашали друг друга. Особенно хороший результат достигается, если показатель преломления пленки равен корню квадратному из показателя преломления линзы. При этом условии интенсивность обеих отраженных от поверхностей пленки волн одинакова.

Интерференция света в тонких пленках. Полосы равной толщины и равного наклона. Кольца Ньютона.

Интерференцию света по методу деления амплитуды во многих отношениях наблюдать проще, чем в опытах с делением волнового фронта. Один из способов, использующих такой метод, – опыт Поля. В опыте Поля свет от источника S отражается двумя поверхностями тонкой прозрачной плоскопараллельной пластинки (рис. 8.7). В любую точку P, находящуюся с той же стороны от пластинки, что и источник, приходят два луча. Эти лучи образуют интерференционную картину. Рис. 8.7 Для определения вида полос можно представить себе, что лучи выходят из мнимых изображений S1 и S2 источника S, создаваемых поверхностями пластинки. На удаленном экране, расположенном параллельно пластинке, интерференционные полосы имеют вид концентрических колец с центрами на перпендикуляре к пластинке, проходящем через источник S. Этот опыт предъявляет менее жесткие требования к размерам источника S, чем рассмотренные выше опыты. Поэтому можно в качестве S применить ртутную лампу без вспомогательного экрана с малым отверстием, что обеспечивает значительный световой поток. С помощью листочка слюды (толщиной 0,03 – 0,05 мм) можно получить яркую интерференционную картину прямо на потолке и на стенах аудитории. Чем тоньше пластинка, тем крупнее масштаб интерференционной картины, т.е. больше расстояние между полосами. Полосы равного наклона Особенно важен частный случай интерференции света, отраженного двумя поверхностями плоскопараллельной пластинки, когда точка наблюдения Pнаходится в бесконечности, т.е. наблюдение ведется либо глазом, аккомодированным на бесконечность, либо на экране, расположенном в фокальной плоскости собирающей линзы (рис. 8.8). Рис. 8.8 В этом случае оба луча, идущие от S к P, порождены одним падающим лучом и после отражения от передней и задней поверхностей пластинки параллельны друг другу. Оптическая разность хода между ними в точке P такая же, как на линии DC: . Здесь n – показатель преломления материала пластинки. Предполагается, что над пластинкой находится воздух, т.е. . Так как , (h – толщина пластинки, и – углы падения и преломления на верхней грани; ), то для разности хода получаем . Следует также учесть, что при отражении волны от верхней поверхности пластинки в соответствии с формулами Френеля ее фаза изменяется на π. Поэтому разность фаз δ складываемых волн в точке P равна: , где – длина волны в вакууме. В соответствии с последней формулой светлые полосы расположены в местах, для которых , где mпорядок интерференции. Полоса, соответствующая данному порядку интерференции, обусловлена светом, падающим на пластинку под вполне определенным углом α. Поэтому такие полосы называют интерференционными полосами равного наклона. Если ось объектива расположена перпендикулярно пластинке, полосы имеют вид концентрических колец с центром в фокусе, причем в центре картины порядок интерференции максимален. Полосы равного наклона можно получить не только в отраженном свете, но и в свете, прошедшем сквозь пластинку. В этом случае один из лучей проходит прямо, а другой – после двух отражений на внутренней стороне пластинки. Однако видимость полос при этом низкая. Для наблюдения полос равного наклона вместо плоскопараллельной пластинки удобно использовать интерферометр Майкельсона (рис. 8.9). Рассмотрим схему интерферометра Майкельсона: з1 и з2 – зеркала. Полупрозрачное зеркало посеребрено и делит луч на две части – луч 1 и 2. Луч 1, отражаясь от з1 и проходя , дает , а луч 2, отражаясь от з2 и далее от , дает . Пластинки и одинаковы по размерам. ставится для компенсации разности хода второго луча. Лучи и когерентны и интерферируют. Рис. 8.9 Интерференция от клина. Полосы равной толщины Мы рассмотрели интерференционные опыты, в которых деление амплитуды световой волны от источника происходило в результате частичного отражения на поверхностях плоскопараллельной пластинки. Локализованные полосы при протяженном источнике можно наблюдать и в других условиях. Оказывается, что для достаточно тонкой пластинки или пленки (поверхности которой не обязательно должны быть параллельными и вообще плоскими) можно наблюдать интерференционную картину, локализованную вблизи отражающей поверхности. Возникающие при этих условиях полосы называютполосами равной толщины. В белом свете интерференционные полосы окрашены. Поэтому такое явление называют цветами тонких пленок. Его легко наблюдать на мыльных пузырях, на тонких пленках масла или бензина, плавающих на поверхности воды, на пленках окислов, возникающих на поверхности металлов при закалке, и т.п. Рассмотрим интерференционную картину, получаемую от пластинок переменной толщины (от клина). Рис. 8.10 Направления распространения световой волны, отраженной от верхней и нижней границы клина, не совпадают. Отраженные и преломленные лучи встречаются, поэтому интерференционную картину при отражении от клина можно наблюдать и без использования линзы, если поместить экран в плоскость точек пересечения лучей (хрусталик глаза помещают в нужную плоскость). Интерференция будет наблюдаться только во 2-й области клина, так как в 1-й области оптическая разность хода будет больше длины когерентности. Результат интерференции в точках и экрана определяется по известной формуле , подставляя в неё толщину пленки в месте падения луча ( или ). Свет обязательно должен быть параллельным ( ): если одновременно будут изменяться два параметра b и α, то устойчивой интерференционной картины не будет. Поскольку разность хода лучей, отразившихся от различных участков клина, будет неодинаковой, освещенность экрана будет неравномерной, на экране будут темные и светлые полосы (или цветные при освещении белым светом, как показано на рис. 8.11). Каждая из таких полос возникает в результате отражения от участков клина с одинаковой толщиной, поэтому их называют полосами равной толщины. Рис. 8.11 Кольца Ньютона На рис. 8.12 изображена оправа, в которой зажаты две стеклянные пластины. Одна из них слегка выпуклая, так что пластины касаются друг друга в какой-то точке. И в этой точке наблюдается нечто странное: вокруг нее возникают кольца. В центре они почти не окрашены, чуть дальше переливаются всеми цветами радуги, а к краю теряют насыщенность цветов, блекнут и исчезают. Так выглядит эксперимент, в XVII веке положивший начало современной оптике. Ньютон подробно исследовал это явление, обнаружил закономерности в расположении и окраске колец, а также объяснил их на основе корпускулярной теории света. Кольцевые полосы равной толщины, наблюдаемые в воздушном зазоре между соприкасающимися выпуклой сферической поверхностью линзы малой кривизны и плоской поверхностью стекла (рис. 8.13), называют кольцами Ньютона.

Читайте также:  Усилитель сигнала мобильного интернета для дачи
Рис. 8.12 Рис. 8.13

Общий центр колец расположен в точке касания. В отраженном свете центр темный, так как при толщине воздушной прослойки, на много меньшей, чем длина волны , разность фаз интерферирующих волн обусловлена различием в условиях отражения на двух поверхностях и близка к π. Толщинаhвоздушного зазора связана с расстоянием r до точки касания (рис. 8.13):

.

Здесь использовано условие . При наблюдении по нормали темные полосы, как уже отмечалось, соответствуют толщине , поэтому для радиуса m-го темного кольца получаем

(m = 0, 1, 2, …).

Если линзу постепенно отодвигать от поверхности стекла, то интерференционные кольца будут стягиваться к центру. При увеличении расстояния на картина принимает прежний вид, так как место каждого кольца будет занято кольцом следующего порядка. С помощью колец Ньютона, как и в опыте Юнга, можно сравнительно простыми средствами приближенно определить длину волны света.

Полосы равной толщины можно наблюдать и с помощью интерферометра Майкельсона, если одно из зеркал з1 или з2 (рис. 8.9) отклонить на небольшой угол.

Итак,полосы равного наклонаполучаются при освещении пластинки постоянной толщины ( ) рассеянным светом, в котором содержатся лучи разных направлений.Полосы равной толщинынаблюдаются при освещении пластинки переменной толщины (клина) ( ) параллельным пучком света. Полосы равной толщины локализованы вблизи пластинки.

Применение интерференции света.

Явление интерференции обусловлено волновой природой света; его количественные закономерности зависят от длины волны. Поэтому это явление применяется для подтверждения волновой природы света и для измерения длин волн (интерференционная спектроскопия).

Явление интерференции применяется также для улучшения качества оптических приборов (просветление оптики) и получения высокоотражающих покрытий. Прохожде­ние света через каждую преломляющую поверхность линзы, например через границу стекло — воздух, сопровождается отражением ≈4% падающего потока (при показа­теле преломления стекла ≈1,5). Так как современные объективы содержат большое количество линз, то число отражений в них велико, а поэтому велики и потери светового потока.

Для устранения недостатков осуществляют так называемое просветле­ние оптики. Для этого на свободные поверхности линз наносят тонкие пленки с показа­телем преломления, меньшим, чем у материала линзы. Если оптическая толщина пленки равна λ/4, то в результате интерференции наблюдается гашение отраженных лучей. Так как добиться одновременного гашения для всех длин волн невозможно, то это обычно делается для наиболее восприимчивой глазом длины волны 0,55 мкм. Поэтому объективы с просветленной оптикой имеют синевато-красный оттенок.

Создание высокоотражающих покрытий стало возможным лишь на основе многолучевой интерференции. В отличие от двухлучевой интерференции многолучевая интерференция возникает при наложении большого числа когерентных световых пучков.

Многолучевую интерференцию можно осуществить в многослойной системе чередующихся пленок с разными показателями преломления (но одинаковой оптической толщиной, равной λ/4), нанесенных на отражающую поверхность. Например, система из семи пленок для области 0,5 мкм дает коэффициент отражения 96% (при коэффициенте пропускания 3,5% и коэффициенте поглощения -7 м) определения размеров изделий (измерения длины тел, длины волны света, изменения длины тела при изменении температуры (интерференционный дилатометр).

Интерферометры — очень чувствительные оптические приборы, позволяющие определять незначительные изменения показателя преломления прозрачных тел (газов, жидких и твердых тел) в зависимости от давления, температуры, примесей и т. д., измеряются весьма малые концентрации примесей в газах и жидкостях. Использование таких точных оптических приборов позволит технологически контролировать качество питьевой воды.

Микроинтерферометр (комбинация интерфе­рометра и микроскопа), служащего для контроля чистоты обработки поверхности. С помощью интерференционных методов проверяется качество шлифовки линз и зеркал, что очень важно при изготовлении оптических приборов, используемых также и в строительной технике. Интерферометры позволяют проводить измерения углов, исследования быстропротекающих процессов, обтекающем летательные аппараты и т.д.

С помощью интерферометров можно измерить коэффициенты линейного расширения твердых тел, что весьма является важным в связи с созданием новых строительных материалов и новых технологий получения металлопластмассовых и пластиковых строительных изделий. Интерферометры позволяют контролировать качество шлифовки поверхностей. Если на поверхности имеется царапина или вмятина, то это приводит к искривлению интерференционных полос. По характеру искривления полос можно судить о глубине царапины, такие исследования поверхности новых строительных материалов для новейших строительных технологий является важным.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9530 – | 7348 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Введем еще два параметра интерференционной картины. Ширина интерференционной полосы – это расстояние между двумя соседними минимумами, а расстояние между двумя интерференционными полосами – это расстояние между двумя соседними максимумами интенсивности. Ясно, что эти оба параметра имеют одинаковое значение. Из геометрических соображений получим это.

Рассмотрим две световые волны, исходящие из точечных источников S1 и S2. n – показатель преломления среды. Экран параллелен прямой соединяющей источники. Область, в которой эти волны перекрываются, называется полем интерференции. Во всей этой области наблюдается чередование мест с максимумом и минимумом интенсивности света. Вычислим ширину полос интерференции Dx (тёмных и светлых полос). Положение точки на экране будет характеризоваться точкой x, отстоящей от центрального максимума (расположен на перпендикуляре, опущенном из середины расстояния между источниками). Установим, что источники колеблются в одинаковой фазе.

Из рисунка видно.

(1)

(2)

Измерив Dx, зная l и d можно вычислить длину волны света l. Именно так впервые вычислили длины волн разных цветов.

Когерентность

Необходимым условием интерференции волн является их когерентность. Условию когерентности удовлетворяют монохроматические волны. Однако монохроматическая волна, описываемая выражением

представляет собой абстракцию. Следовательно, рассмотренный нами процесс интерференции является идеализированным. Волны, излучаемые любыми независимыми источниками света, не могут быть монохроматическими и когерентными. Причина немонохроматичности, следовательно, некогерентности световых волн лежит в самой природе происхождения этих волн. Излучение светящегося тела слагается из волн, испускаемых атомами. Излучение каждого атома длится очень короткое время (порядка 10 -8 с). За это время возбужденный атом переходит в нормальное состояние и перестает излучать. Возбудившись вновь, атом начинает испускать световые волны уже с новой начальной фазой. Разность фаз между излучением двух независимых атомов не остается постоянной, поскольку процесс излучения является случайным. Таким образом, волны испускаемые атомами, лишь короткий промежуток времени (порядка 10 -8 с) имеют приблизительно постоянные амплитуду и фазы колебаний.

Читайте также:  Флешка мигает но компьютер ее не видит

Проведенные рассуждения наталкивают на вывод о принципиальной невозможности получения интерференционной картины от естественного источника световой волны. Однако интерференционные картины все-таки наблюдаются. Для их существования необходимо выполнение ряда условий. Рассмотрим их.

Введем несколько понятий и определений. Прерывистое излучение света атомами в виде отдельных коротких импульсов называется волновым цугом. Любой немонохроматический свет можно представить в виде совокупности сменяющих друг друга независимых гармонических цугов. Средняя продолжительность одного цуга называется временем когерентности . Когерентность существует только в пределах одного цуга и время когерентности не может превышать продолжительности излучения одного цуга, т.е. . Обнаружить четкую интерференционную картину можно только тогда, когда время разрешения прибора меньше времени когерентности накладываемых световых волн.

За время когерентности волна распространяется в вакууме на расстояние , равное . Расстояние называется длиной когерентности (длиной цуга). Таким образом, длина когерентности есть расстояние, при прохождении которого одна или несколько световых волн утрачивают когерентность. Следовательно, для получения интерференционной картины разность хода световых волн должна быть меньше длины когерентности для используемого источника света: .

Длина когерентности световой волны непосредственно связана со степенью монохроматичности света, равной отношению , где – конечный интервал длин волн, интерференция которых наблюдается. Эта связь выражается соотношением:

.

Таким образом, для получения интерференционной картины от реального источника излучения необходимо иметь излучение с малым значением . Это условие представляет собой способ увеличения длины когерентности. Для солнечного света . Лазеры позволили получить порядка сотен метров.

Рассмотрим для пояснения длины когерентности опыт Юнга.

В опыте Юнга интерференционная картина по мере удаления от её середины размывается. Несколько полос видны, но далее постепенно они исчезают. Почему?

Ответ ясен: потому, что степень когерентности складываемых в этих точках экрана колебаний (волн) постепенно уменьшается, и, наконец, колебания становятся полностью некогерентными.

Исходя из этого факта, попытаемся объяснить наблюдаемое с помощью следующей модели. Пусть мы видим, например, первые четыре порядка интерференции (m = 4), а затем полосы исчезают. Этот переход наблюдается довольно плавным, но мы не будем останавливаться на деталях. Исчезновение полос с m > 4 означает, что колебания, пришедшие в соответствующие точки экрана от обеих волн, оказываются уже некогерентными между собой. Т.е. пока их разность хода не превышает m = 4 длин волн, колебания в какой-то степени когерентны. Значит, вдоль распространения волны когерентными между собой будут только участки волны в этом интервале длины. Данный интервал и называется длиной когерентности . В рассмотренном случае . Заметим, что в данных условиях это простейший способ оценки длины когерентности: , где m
максимальный порядок интерференции, соответствующей ещё видимой полосе.

Всё это можно схематически представить с помощью рисунка.

В опыте Юнга, в падающие на обе щели волне длина когерентности равна . Щели создают две волны с той же длиной когерентности, но поскольку они достигают разных точек экрана с различными разностями хода, то участки когерентности обеих волн постепенно сдвигаются относительно друг друга. Начиная с m = 5, они перестают перекрывать друг друга, т.е. складываемые колебания становятся некогерентными и интерференционные полосы исчезают.

Всё сказанное, как мы увидим далее, справедливо при условии, что "первичная" щель S достаточно узкая. При расширении этой щели вступает в действие другой эффект. Рассмотрим его.

Вероятность возбуждения интерференционных колебаний, кроме временных параметров волн характеризуется также пространственной когерентностью. Эта характеристика связана с геометрическими размерами конкретной системы разделения световой волны и описывается так называемой шириной когерентности . Под шириной когерентности понимается расстояние между точками перпендикулярной к направлению распространения волны поверхности, в пределах которого волны когерентны.

Как уже говорилось, цель в опыте Юнга предполагалась весьма узкой. Часто говорят о бесконечно узкой щели. Расширение же щели, как и уменьшение степени монохроматичности света приводит к ухудшению (размытию) интерференционных полос и даже к полному их исчезновению. Чтобы выяснить роль ширины щели S, рассмотрим теперь на примере опыта Юнга другой крайний случай: излучение монохроматическое, но щель не узкая.

Интерференционную картину на экране Э можно представить как наложение интерференционных картин от бесконечно узких щелей, на которые мысленно разобьем щель S. Пусть положение максимумов на экране Э от узкой щели, взятой около верхнего края щели S – точки 1 – таково, как отмечено сплошными отрезками на рисунке. А максимумы от узкой щели, взятой около нижнего края щели S – точки 2 – будут смещены вверх, они отмечены пунктирными отрезками на этом же рисунке. Интервалы между этими максимумами заполнены максимумами от промежуточных узких щелей, расположенных между краями 1 и 2.

При расширении щели S расстояния между максимумами от её крайних элементов будут увеличиваться, т.е. интервалы между соседними максимумами от одного края щели будут постепенно заполняться максимумами от остальных элементов щели.

Для простоты будем считать, что в приведённом рисунке расстояния a = c. Тогда при ширине щели b, равной ширине интерференционной полосы Dx, интервал между соседними максимумами от края 1 будет полностью заполнен максимумами от остальных элементов щели, и интерференционные полосы исчезнут.

Итак, при расширении щели S интерференционная картина постепенно размывается и при некоторой ширине щели практически исчезает.

Это наблюдаемое явление можно объяснить иначе, а именно, интерференционная картина исчезает вследствие того, что вторичные источники – щели S1 и S2 становятся некогерентными. Сказанное позволяет говорить о ширине когерентности падающей на щели S1 и S2 световой волны – ширине , на которой отдельные участки волны в достаточной степени когерентны между собой. Во избежание недоразумений уточним: под шириной имеется в виду характерное для данной установки расстояние между точками поверхности, перпендикулярной направлению распространения волны.

Ширина когерентности связана с длиной волны соотношением

,

где – угловая ширина источника относительно интересующего нас места (например, места разделения световой волны, экрана со щелями S1 и S2).

Это значит, что ширина когерентности пропорциональна длине волны и обратно пропорциональна угловой ширине источника.

Понятно, что для обеспечения пространственной когерентности освещения щелей S1 и S2 ширина b входной щели S должна быть достаточно малой.

a – расстояние между экранами со щелями; j = b/a – угловой размер источника света – щели S.

Интерференционная картина в монохроматическом свете с длиной волны l получается отчётливой, если выполняется следующее приближённое условие.

b – ширина щели S, а 2q – апертура интерференции.

Если в качестве источника использовать непосредственно Солнце (его угловой размер 0,01 рад и lср» 0,5 мкм), то ширина когерентности hког » 0,05 мм. Поэтому для получения интерференционной картины от двух щелей с помощью такого излучения расстояние между двумя щелями должно быть меньше 0,05 мм, что сделать практически невозможно.

Общие выводы. Для получения устойчивой интерференционной картины с использованием обычных источников света необходимо исходную световую волну разделить на две части, которые дадут интерференционную картину при соблюдении двух условий:

Читайте также:  Телефон vivo с выдвижной камерой

1. Разность хода световых волн должна быть меньше длины когерентности: . Поскольку длина когерентности непосредственно зависит от монохроматичности волн и времени когерентности, это условие называется временной когерентностью волн.

2. Ширина когерентности должна превышать расстояние между некоторыми характерными световыми лучами в месте расщепления исходной волны (на рисунках это расстояние между источниками излучения и ).

Видность интерференционной картины по определению равна

Здесь – интенсивность света в середине светлой полосы, – в середине ближайшей темной полосы.

Видность интерференционной картины меняется в пределах от 0 до 1. Нулевая видность соответствует условию , при котором полосы просто отсутствуют (равномерно освещенная область экрана). Видностьравная единице соответствует условию .

С интерференционными явлениями мы сталкиваемся довольно часто: цвета масляных пятен на асфальте, окраска мыльных пузырей и замерзающих оконных стекол, причудливые цветные рисунки на крыльях некоторых бабочек и жуков – все это проявление интерференции света.

Необходимым условием интерференции является их когерент­ность, т. е. равенство их частоти постоянная во времени разность фаз. Этому условию удовлетворяют только монохроматические свето­вые волны, т.е. волны с одинаковой частотой.

Условия когернетности. Любая волна – результат наложения большого количества колебаний с различными частотами, т. е. световая волна характеризуется спектром (см рис). Если этот спектр узок, то свет воспринимается как монохроматический с частотой ω0. Но и такую волну можно рассматривать как волну, полученную от наложения двух волн с близкими частотами:ω0 и ω0 + ∆ω, где ∆ω – ширина спектра, т. е. интервал между частотами, интенсивность которых I = I0/2.

При наложении волн с близкими частотами в некоторой точке пространства возникают биения

Амплитуда результирующего колебания (биений) меняется во времени. Пусть ∆t – промежуток времени, за который определяется интенсивность волны.

При ∆t ТБ I = I1 + I2.

В первом случае мы должны сделать вывод, что накладывающиеся волны когерентные между собой, а во втором – не когерентные. Т. е. об одном и том же процессе получили два противоположных вывода. В связи с этим и вводится понятие ∆t = τ (время когерентности) – это наибольший промежуток времени при усреднении по которому накладывающиеся волны еще остаются когерентными.

За τ принимают период биений(τ = ТБ).
и , .

Т. е. время когерентности зависит от ширины спектра накладывающихся волн. Когерентность, зависящую от ширины спектра, принято называть временной когерентностью.

Время когерентности позволяет определить длину когерентности

.(4.1)

Длина когерентности определяет расстояние, при прохождении которого, накладывающиеся волны утрачивают свойство когерентности.
Кроме временной когерентности проявляется еще пространственная когерентность. Она обусловлена тем, что источники света характеризуются угловыми размерами. Пусть имеется источник света. Свет, приходящий от разных точек источника, в некоторую точку пространства А будет иметь разное направление вектора (волновое число) Угловой размер удаленного источника Ө можно выразить так:

.

Величину rk – называют радиусом когерентности. Он определяет максимальное расстояние в направлении перпендикулярном направлению света, на котором волны остаются еще когерентными между собой.

(4.2)

т. е. радиус когерентности зависит от углового размера источника и среднего значения длин волн, приходящих от этого источника.
Определим длину и радиус когерентности лучей видимого диапазона, приходящих от Солнца. Учтем, что угловой размер Солнца Ө= 10 -2 радиана, среднее значение длины волны лучей видимого диапазона λ

5 10 -7 м, а ширина видимого диапазона∆λ

2, 5۠·10 -7 м, тогда lког= 1 мкм, а rk= 50 мкм.

Интерференция света
Явление интерференции свидетельствует о том, что свет — это волна. Интерференцией световых волн называется сложение двух когерентных волн, вследствие которого наблюдается усиление или ослабление результирующих световых колебаний в различных точках пространства.
Условия интерференции Волны должны быть когерентны. Когерентность – согласованность. В простейшем случае к огерентными являются волны одинаковой длины, между которыми существует постоянная разность фаз.
Все источники света, кроме лазера, некогерентны, однако Т. Юнг впервые пронаблюдал (1802) явление интерференции, разделив волну на две с помощью двойной щели. Свет от точечного монохроматического источника S падал на два небольших отвер­стия на экране. Эти отверстия действуют как два когерентных источника света S1 и S2. Волны от них интерферируют в области перекрытия, проходя разные пути: 1 и ℓ2. На экране наблюдается чередование светлых и темных полос.
Условие максимума. Пусть разность хода между двумя точками , тогда условие максимума: т. е. на разности хода волн укладывается четное число полуволн (k= 1, 2, 3, . ). или
Условие минимума Пусть разность хода между двумя точками , тогда условие минимума: , т. е. на разности хода волн укладывается нечетное число полуволн (k= 1, 2, 3, . ).
Интерференция света в тонких пленках Различные цвета тонких пленок — результат интерфе­ренции двух волн, отражаю­щихся от нижней и верхней по­верхностей пленки. При отражении от верх­ней поверхности пленки проис­ходит потеря полуволны. Сле­довательно, оптическая раз­ность хода . Тогда условие максимального усиле­ния интерферирующих лучей в отраженном свете следую­щее: . Если потерю полуволны не учитывать, то .
Кольца Ньютона Интерференционная карти­на в тонкой прослойке воздуха между стеклянными пластина­ми — кольца Ньютона. Волна 1 — результат отра­жения ее от точки А (граница стекло —воздух). Волна 2 — отражение от плоской пласти­ны (точка В, граница воздух — стекло). Волны когерентны: возникает интерференционная картина в прослойке воздуха между точками А и В в виде-концентрических колец. Зная радиусы колец, можно вычислить длину волны, используя формулу , где r – радиус кольца, R — радиус кри­визны выпуклой поверхности линзы.
Использование интерференции в технике
Проверка качества обра­ботки поверхности до одной де­сятой длины волны. Несовершенство обра­ботки определяют но искрив­лению интерференционных по­лос, образующихся при отра­жении света от проверяемой поверхности. Интерферометры служат для точного измерения показателя преломления газов и других веществ, длин световых волн.
Просветление оптики. Объективы фотоаппаратов и кинопроекторов, перископы под­водных лодок и другие оптические устройства состоят из большого числа оптических стекол, линз, призм. Каждая отполиро­ванная поверхность стекла отражает около 5% падающего на нее света. Чтобы уменьшить долю отражаемой энергии, исполь­зуется явление интерференции света.
На поверхность оптическо­го стекла наносят тонкую пленку. Для того чтобы волны 1 и 2 ослабляли друг друга, должно выполняться условие минимума. В отраженном свете разность хода волн равна: . Потеря полуволны происходит при отражении как от пленки, так и от стекла (показатель преломления стекла больше, чем пленки), поэтому, эту потерю можно не учитывать. Следо­вательно, , где n – показатель преломления пленки; h — толщина пленки. Минимальная толщина пленки будет при k=0. Поэтому . При равенстве амплитуд гашение света будет полным. Толщину пленки подбирают так, чтобы пол­ное гашение при нормальном падении имело место для длин волн средней части спектра (для зеленого цвета): . Чтобы рассчитать толщину пленки в этой формуле необходимо взять длину волны и показатель преломления зеленого света. Лучи красного и фиолетового цвета ослабляются незначительно.поэтому объективы оптических приборов в отраженном свете имеют сиреневые оттенки

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector