Соединение вторичных обмоток понижающего трансформатора

Бывает ситуация, когда у трансформатора нет обмотки на нужное напряжение или ток, зато есть много всяких разных обмоток. Что делать?

Для увеличения напряжения, обмотки можно соединять последовательно. При этом общее напряжение будет равно сумме напряжений всех обмоток. Максимальный ток будет равен наименьшему из номинальных токов всех этих обмоток.

Обмотки надо сфазировать, иначе напряжения в них могут не складываться, а вычитаться (можно ра-

ботать и в такой ситуации, но КПД трансформатора снизится). Делается это так: первая и вторая обмотки соединяются последовательно, а к их концам подключается вольтметр переменного тока (рис. 16).

Вольтметр должен показать сумму напряжений обмоток 1 и 2 (это синфазное, или согласное включение обмоток). Если показания вольтметра меньше (в случае противофазного, или встречного включения он покажет разность напряжений обмоток), выводы обмотки 2 надо поменять местами. В случае, когда последовательно соединяется большее количество обмоток, то все повторяется, при этом роль обмотки 1 выполняют уже соединенные обмотки, а роль обмотки 2 – вновь подключаемая обмотка.

На рис. 16 точкой возле обмотки обозначается ее условное начало. Оно имеет такой смысл: если на выводе с точкой первичной обмотки присутствует положительный полупериод напряжения (грубо говоря "плюс"), то и на выводах с точкой всех вторичных обмоток в этот момент также "плюс". Поэтому, зная условные начала обмоток, можно сразу соединить все обмотки синфазно. К сожалению, на самом трансформаторе начала обмоток обычно не обозначают.

Если в трансформаторе много одинаковых вторичных обмоток на маленький ток, то по идее их можно соединить параллельно, тогда общий их ток будет равен сумме токов отдельных обмоток.

На самом деле это очень "тонкий" вопрос. В жизни практически никогда не бывает, чтобы две обмотки были абсолютно одинаковыми. Хоть малюсенькая разница в их напряжениях, но есть. И внутри параллельных обмоток могут возникнуть уравнительные токи иногда маленькой, а иногда и большой величины. Может получиться, что трансформатор здорово греется, а наружу тока почти не выдает. Но бывает и так, что производители мотают трансформатор в несколько проводов одновременно. Тогда обмотки получаются практически совсем одинаковыми и такие обмотки параллельно соединять можно (хотя, ГОСТ 14233-84 "Трансформаторы питания для бытовой аппаратуры" дает допуск на асимметрию обмоток, включаемых параллельно, до 3% от напряжения обмотки – это довольно большое рассогласование!). При этом очень важно правильно сфазировать обмотки, иначе будет короткое замыкание. Только надо быть абсолютно уверенным в том, что обмотки одинаковы. Поэтому давайте для надежности пользоваться таким правилом:

Если производитель явно указывает, что обмотки трансформатора можно соединять параллельно, то можно. Если такого явного указания нет – то нельзя.

Как правильно сфазировать обмотки? Начала всех обмоток соединить вместе – это будет начало общей обмотки. Конец общей обмотки составят соединенные вместе концы всех обмоток.

Если неизвестны начала и концы обмоток, то сначала соедините между собой один провод от одной обмотки и один от другой. Подайте питание на трансформатор и измерьте напряжение между оставшимися концами этих обмоток (рис. 17).

Если между ними напряжение равное удвоенному напряжению каждой из обмоток, то концы одной из обмоток надо поменять местами. Снова подайте питание и снова измерьте напряжение. Если оно равно нулю, то все ОК, соединяете концы, между которыми измеряли напряжение и пользуетесь. Если же напряжение не равно нулю, то обмотки разные, и их паралле- лить нельзя!

А если напряжение на двух обмотках получилось не

ноль, но очень близкое к нулю? Давайте рассмотрим пример. Сопротивление вторичной обмотки тороидального трансформатора 75ВА 2×28В равно примерно 0,5 Ом. Допустим мы хотим получить такую обмотку из двух, каждая из которых рассчитана на вдвое меньший ток. Тогда сопротивление каждой обмотки вдвое выше и будет равно 1 Ом. С точки зрения уравнительных токов обмотки включены последовательно (значит, общее сопротивление удваивается) и к ним прикладывается разность напряжений между обмотками. Допустим, эта разность напряжений равна 0,5 вольт. Тогда уравнительный ток будет

2. Если вольтметр показывает разность напряжений обмоток в точности равную нулю, это означает, что и формы напряжений обмоток, и их величины одинаковы (что уже само по себе редкое явление). Но кто поручится, что при изменении напряжения в сети, или изменении тока, потребляемого нагрузкой, формы токов так одинаковыми и останутся? Это не всегда случается даже у однотипных трансформаторов (из-за разброса свойств стали они могут немного по-разному насыщаться), а для трансформаторов разных типов это вообще нереально.

Поэтому давайте не будем рисковать, и не будем создавать себе возможные проблемы, соединяя параллельно обмотки разных трансформаторов!

Бросок тока при включении трансформатора. При включении трансформатора в сеть даже на холостом ходу возникает всплеск тока (пусковой ток, являющийся следствием переходного процесса в трансформаторе), который может превышать номинальный в десятки раз. Длительность пускового тока обычно не превышает 0,02…0,03 секунды, поэтому он не приводит к перегреву обмоток. Однако в этот момент на проводники обмоток действуют значительные электромагнитные силы, которые могут сдвинуть плохо закрепленные витки. С течением времени витки разбалтываются, и акустический шум трансформатора растет.

Другим неприятным последствием пускового тока является перегорание предохранителя в цепи первичной обмотки.

Величина пускового тока определяется как моментом времени включения (по отношению к начальной фазе сетевого напряжения), так и параметрами трансформатора. В частности, повышение числа витков первичной обмотки снижает пусковой ток, что еще раз говорит в пользу применения трансформаторов с пониженной рабочей индукцией. И наоборот, у трансформатора, работающего близко к насыщению, бросок тока при включении может быть очень большим.

Трансформаторы с пониженной рабочей индукцией. Существует мнение (вполне оправданное), что хорошие результаты дает применение в усилителях трансформаторов с пониженной индукцией, работающих практически на линейном участке кривой намагничивания (конец участка А – начало участка В на рис. 9). Действительно, снижение индукции уменьшает потоки рассеяния, а значит и магнитные поля трансформатора, а также снижает пусковой ток. Это достигается увеличением числа витков в обмотках в 1,2…1,3 раза выше номинального. Уменьшение полей рассеяния снижает индуктивность обмоток, но из-за повышения длины провода, возрастает их активное сопротивление, поэтому просадки напряжения под нагрузкой практически не меняются, а вот нагрев обмоток растет. Для нормализации нагрева увеличивают мощность трансформатора, повышая диаметр проводов обмоток.

Таким образом, чтобы получить трансформатор с пониженной рабочей индукцией, необходимо изготовить трансформатор с мощностью в 1,3…1,5 раз больше требуемой, все обмотки которого рассчитаны на напряжение в 1,2…1,3 раза больше необходимого.

Необходимо отметить, что при этом улучшается только работа самого трансформатора, на усилитель это никак не сказывается (если только магнитные поля трансформатора не действуют на усилитель, но к этому необходимо стремиться в любом случае). Поэтому затраты на такой специальный трансформатор практически никогда не окупаются (кроме техники очень высокого качества, там применение подобного трансформатора не только оправдано, но и зачастую просто необходимо), а в конструкциях начинающих радиолюбителей – наверняка. Поэтому "низкоиндукционный" трансформатор имеет смысл применять, если он уже есть, а если его нет, то и не надо.

Подмагничивание сердечника постоянным током. Трансформатор – устройство, предназначенное для работы на переменном токе (причем только своей, или близкой к ней частоты – если частота тока сильно отличается от номинальной, он может работать хуже или не работать вообще). Постоянный ток он не преобразует, потому что ЭДС в обмотках наводится только изменяющимся магнитным полем, которое получается, если ток переменный. И на постоянный ток не влияет индуктивность обмоток. Поэтому если на трансформатор подать 220 вольт постоянного тока, трансформатор сгорит – активное сопротивление первичной обмотки маленькое, и ток будет огромным.

А что случится, если через обмотку все же протекает постоянный ток? На переменном токе даже очень большие токи обмоток практически не изменяют рабочий магнитный поток, так как влияния первичной и вторичной обмоток взаимно компенсируются. На постоянном токе взаимодействия обмоток и взаимной компенсации токов не происходит. Постоянный ток создаст ничем не компенсируемое магнитное поле, которое будет подмагничивать сердечник, изменяя индукцию в нем. Если это поле достаточно велико, то сердечник начнет насыщаться со всеми вытекающими отсюда последствиями.

Так что появления постоянного тока (заметной величины) в трансформаторе следует избегать. Исключение составляют выходные трансформаторы ламповой техники – в них предусмотрен зазор в сердечнике для исключения насыщения. Но и в таком случае трансформатору работать не очень комфортно.

Источник: Рогов И.Е. Конструирование источников питания звуковых усилителей. – Москва: Инфра- Инженерия, 2011. – 160 с.

Бывает ситуация, когда у трансформатора нет обмотки на нужное напряжение или ток, зато есть много всяких разных обмоток. Что делать?

Для увеличения напряжения, обмотки можно соединять последовательно. При этом общее напряжение будет равно сумме напряжений всех обмоток. Максимальный ток будет равен наименьшему из номинальных токов всех этих обмоток.

Читайте также:  Что можно сделать из флоппи дисковода

Обмотки надо сфазировать, иначе напряжения в них могут не складываться, а вычитаться (можно ра-

ботать и в такой ситуации, но КПД трансформатора снизится). Делается это так: первая и вторая обмотки соединяются последовательно, а к их концам подключается вольтметр переменного тока (рис. 16).

Вольтметр должен показать сумму напряжений обмоток 1 и 2 (это синфазное, или согласное включение обмоток). Если показания вольтметра меньше (в случае противофазного, или встречного включения он покажет разность напряжений обмоток), выводы обмотки 2 надо поменять местами. В случае, когда последовательно соединяется большее количество обмоток, то все повторяется, при этом роль обмотки 1 выполняют уже соединенные обмотки, а роль обмотки 2 – вновь подключаемая обмотка.

На рис. 16 точкой возле обмотки обозначается ее условное начало. Оно имеет такой смысл: если на выводе с точкой первичной обмотки присутствует положительный полупериод напряжения (грубо говоря "плюс"), то и на выводах с точкой всех вторичных обмоток в этот момент также "плюс". Поэтому, зная условные начала обмоток, можно сразу соединить все обмотки синфазно. К сожалению, на самом трансформаторе начала обмоток обычно не обозначают.

Если в трансформаторе много одинаковых вторичных обмоток на маленький ток, то по идее их можно соединить параллельно, тогда общий их ток будет равен сумме токов отдельных обмоток.

На самом деле это очень "тонкий" вопрос. В жизни практически никогда не бывает, чтобы две обмотки были абсолютно одинаковыми. Хоть малюсенькая разница в их напряжениях, но есть. И внутри параллельных обмоток могут возникнуть уравнительные токи иногда маленькой, а иногда и большой величины. Может получиться, что трансформатор здорово греется, а наружу тока почти не выдает. Но бывает и так, что производители мотают трансформатор в несколько проводов одновременно. Тогда обмотки получаются практически совсем одинаковыми и такие обмотки параллельно соединять можно (хотя, ГОСТ 14233-84 "Трансформаторы питания для бытовой аппаратуры" дает допуск на асимметрию обмоток, включаемых параллельно, до 3% от напряжения обмотки – это довольно большое рассогласование!). При этом очень важно правильно сфазировать обмотки, иначе будет короткое замыкание. Только надо быть абсолютно уверенным в том, что обмотки одинаковы. Поэтому давайте для надежности пользоваться таким правилом:

Если производитель явно указывает, что обмотки трансформатора можно соединять параллельно, то можно. Если такого явного указания нет – то нельзя.

Как правильно сфазировать обмотки? Начала всех обмоток соединить вместе – это будет начало общей обмотки. Конец общей обмотки составят соединенные вместе концы всех обмоток.

Если неизвестны начала и концы обмоток, то сначала соедините между собой один провод от одной обмотки и один от другой. Подайте питание на трансформатор и измерьте напряжение между оставшимися концами этих обмоток (рис. 17).

Если между ними напряжение равное удвоенному напряжению каждой из обмоток, то концы одной из обмоток надо поменять местами. Снова подайте питание и снова измерьте напряжение. Если оно равно нулю, то все ОК, соединяете концы, между которыми измеряли напряжение и пользуетесь. Если же напряжение не равно нулю, то обмотки разные, и их паралле- лить нельзя!

А если напряжение на двух обмотках получилось не

ноль, но очень близкое к нулю? Давайте рассмотрим пример. Сопротивление вторичной обмотки тороидального трансформатора 75ВА 2×28В равно примерно 0,5 Ом. Допустим мы хотим получить такую обмотку из двух, каждая из которых рассчитана на вдвое меньший ток. Тогда сопротивление каждой обмотки вдвое выше и будет равно 1 Ом. С точки зрения уравнительных токов обмотки включены последовательно (значит, общее сопротивление удваивается) и к ним прикладывается разность напряжений между обмотками. Допустим, эта разность напряжений равна 0,5 вольт. Тогда уравнительный ток будет

2. Если вольтметр показывает разность напряжений обмоток в точности равную нулю, это означает, что и формы напряжений обмоток, и их величины одинаковы (что уже само по себе редкое явление). Но кто поручится, что при изменении напряжения в сети, или изменении тока, потребляемого нагрузкой, формы токов так одинаковыми и останутся? Это не всегда случается даже у однотипных трансформаторов (из-за разброса свойств стали они могут немного по-разному насыщаться), а для трансформаторов разных типов это вообще нереально.

Поэтому давайте не будем рисковать, и не будем создавать себе возможные проблемы, соединяя параллельно обмотки разных трансформаторов!

Бросок тока при включении трансформатора. При включении трансформатора в сеть даже на холостом ходу возникает всплеск тока (пусковой ток, являющийся следствием переходного процесса в трансформаторе), который может превышать номинальный в десятки раз. Длительность пускового тока обычно не превышает 0,02…0,03 секунды, поэтому он не приводит к перегреву обмоток. Однако в этот момент на проводники обмоток действуют значительные электромагнитные силы, которые могут сдвинуть плохо закрепленные витки. С течением времени витки разбалтываются, и акустический шум трансформатора растет.

Другим неприятным последствием пускового тока является перегорание предохранителя в цепи первичной обмотки.

Величина пускового тока определяется как моментом времени включения (по отношению к начальной фазе сетевого напряжения), так и параметрами трансформатора. В частности, повышение числа витков первичной обмотки снижает пусковой ток, что еще раз говорит в пользу применения трансформаторов с пониженной рабочей индукцией. И наоборот, у трансформатора, работающего близко к насыщению, бросок тока при включении может быть очень большим.

Трансформаторы с пониженной рабочей индукцией. Существует мнение (вполне оправданное), что хорошие результаты дает применение в усилителях трансформаторов с пониженной индукцией, работающих практически на линейном участке кривой намагничивания (конец участка А – начало участка В на рис. 9). Действительно, снижение индукции уменьшает потоки рассеяния, а значит и магнитные поля трансформатора, а также снижает пусковой ток. Это достигается увеличением числа витков в обмотках в 1,2…1,3 раза выше номинального. Уменьшение полей рассеяния снижает индуктивность обмоток, но из-за повышения длины провода, возрастает их активное сопротивление, поэтому просадки напряжения под нагрузкой практически не меняются, а вот нагрев обмоток растет. Для нормализации нагрева увеличивают мощность трансформатора, повышая диаметр проводов обмоток.

Таким образом, чтобы получить трансформатор с пониженной рабочей индукцией, необходимо изготовить трансформатор с мощностью в 1,3…1,5 раз больше требуемой, все обмотки которого рассчитаны на напряжение в 1,2…1,3 раза больше необходимого.

Необходимо отметить, что при этом улучшается только работа самого трансформатора, на усилитель это никак не сказывается (если только магнитные поля трансформатора не действуют на усилитель, но к этому необходимо стремиться в любом случае). Поэтому затраты на такой специальный трансформатор практически никогда не окупаются (кроме техники очень высокого качества, там применение подобного трансформатора не только оправдано, но и зачастую просто необходимо), а в конструкциях начинающих радиолюбителей – наверняка. Поэтому "низкоиндукционный" трансформатор имеет смысл применять, если он уже есть, а если его нет, то и не надо.

Подмагничивание сердечника постоянным током. Трансформатор – устройство, предназначенное для работы на переменном токе (причем только своей, или близкой к ней частоты – если частота тока сильно отличается от номинальной, он может работать хуже или не работать вообще). Постоянный ток он не преобразует, потому что ЭДС в обмотках наводится только изменяющимся магнитным полем, которое получается, если ток переменный. И на постоянный ток не влияет индуктивность обмоток. Поэтому если на трансформатор подать 220 вольт постоянного тока, трансформатор сгорит – активное сопротивление первичной обмотки маленькое, и ток будет огромным.

А что случится, если через обмотку все же протекает постоянный ток? На переменном токе даже очень большие токи обмоток практически не изменяют рабочий магнитный поток, так как влияния первичной и вторичной обмоток взаимно компенсируются. На постоянном токе взаимодействия обмоток и взаимной компенсации токов не происходит. Постоянный ток создаст ничем не компенсируемое магнитное поле, которое будет подмагничивать сердечник, изменяя индукцию в нем. Если это поле достаточно велико, то сердечник начнет насыщаться со всеми вытекающими отсюда последствиями.

Так что появления постоянного тока (заметной величины) в трансформаторе следует избегать. Исключение составляют выходные трансформаторы ламповой техники – в них предусмотрен зазор в сердечнике для исключения насыщения. Но и в таком случае трансформатору работать не очень комфортно.

Источник: Рогов И.Е. Конструирование источников питания звуковых усилителей. – Москва: Инфра- Инженерия, 2011. – 160 с.

Как разобраться с обмотками трансформатора, как его правильно подключить к сети и не "спалить" и как определить максимальные токи вторичных обмоток.
Такие и подобные вопросы задают себе многие начинающие радиолюбители.
В этой статье я постараюсь ответить на подобные вопросы и на примере нескольких трансформаторов (фото в начале статьи), разобраться с каждым из них..Надеюсь, эта статья будет полезной многим радиолюбителям.

Для начала запомните общие особенности для броневых трансформаторов

– Сетевая обмотка, как правило мотается первой (ближе всех к сердечнику) и имеет наибольшее активное сопротивление (если только это не повышающий трансформатор, или трансформатор имеющий анодные обмотки).

Читайте также:  Этот диск нельзя использовать для хранения архива

– Сетевая обмотка может иметь отводы, или состоять например из двух частей с отводами.

– Последовательное соединение обмоток (частей обмоток) у броневых трансформаторов производится как обычно, начало с концом или выводы 2 и 3 (если например имеются две обмотки с выводами 1-2 и 3-4).

– Параллельное соединение обмоток (только для обмоток с одинаковым количеством витков), производится как обычно начало с началом одной обмотки, и конец с концом другой обмотки (н-н и к-к, или выводы 1-3 и 2-4 – если например имеются одинаковые обмотки с выводами 1-2 и 3-4).

Общие правила соединения вторичных обмоток для всех типов трансформаторов.

Для получения различных выходных напряжений и нагрузочных токов обмоток для личных нужд, отличных от имеющихся на трансформаторе, можно получать путём различных соединений имеющихся обмоток между собой. Рассмотрим все возможные варианты.

– Обмотки можно соединять последовательно, в том числе обмотки намотанные разным по диаметру проводом, тогда выходное напряжение такой обмотки будет равно сумме напряжений соединённых обмоток (Uобщ. = U1 + U2. + Un). Нагрузочный ток такой обмотки, будет равен наименьшему нагрузочному току из имеющихся обмоток.
Например: имеются две обмотки с напряжениями 6 и 12 вольт и токами нагрузки 4 и 2 ампера – в итоге получим общую обмотку с напряжением 18 вольт и током нагрузки – 2 ампера.

– Обмотки можно соединять параллельно, только если они содержат одинаковое количество витков , в том числе намотанные разным по диаметру проводом. Правильность соединения проверяется так. Соединяем вместе два провода от обмоток и на оставшихся двух измеряем напряжение.
Если напряжение будет равно удвоенному, то соединение произведено не правильно, в этом случае меняем концы любой из обмоток.
Если напряжение на оставшихся концах равно нулю, или около того (перепад более чем в пол-вольта не желателен, обмотки в этом случае будут греться на ХХ), смело соединяем вместе оставшиеся концы.
Общее напряжение такой обмотки не изменяется, а нагрузочный ток будет равен сумме нагрузочных токов, всех соединённых параллельно обмоток.
(Iобщ. = I1 + I2. + In) .
Например: имеются три обмотки с выходным напряжением 24 вольта и токами нагрузки по 1 амперу. В итоге получим обмотку с напряжением 24 вольта и током нагрузки – 3 ампера.

– Обмотки можно соединять параллельно-последовательно (особенности для параллельного соединения см. пунктом выше). Общее напряжение и ток будет, как при последовательном соединении.
Например: имеем две последовательно и три параллельно соединённые обмотки (примеры, описанные выше). Соединяем эти две составные обмотки последовательно. В итоге получаем общую обмотку с напряжением 42 вольта (18+24) и током нагрузки по наименьшей обмотке, то есть – 2 ампера.

– Обмотки можно соединять встречно, в том числе намотанные разным по диаметру проводом (так же параллельно и последовательно соединённые обмотки). Общее напряжение такой обмотки будет равно разности напряжений, включённых встречно обмоток, общий ток будет равен наименьшей по току нагрузки обмотки. Такое соединение применяется в том случае, когда необходимо понизить выходное напряжение имеющейся обмотки. Так же, что бы понизить выходное напряжение какой либо обмотки, можно домотать поверх всех обмоток дополнительную обмотку проводом, желательно не меньшего диаметра той обмотки, напряжение которой необходимо понизить, что бы не уменьшился нагрузочный ток. Обмотку можно намотать, даже не разбирая трансформатор, если есть зазор между обмотками и сердечником , и включить её встречно с нужной обмоткой.
Например: имеем на трансформаторе две обмотки, одна 24 вольта 3 ампера, вторая 18 вольт 2 ампера. Включаем их встречно и в итоге получим обмотку с выходным напряжением в 6 вольт (24-18) и током нагрузки 2 ампера.
Но это чисто теоретически, на практике-же КПД такого включения будет ниже, чем если бы трансформатор имел одну вторичную обмотку
Дело в том, что протекающий по обмоткам ток – создаёт в обмотках ЭДС, и в большей обмотке напряжение уменьшается по отношению к напряжению ХХ, а в меньшей – увеличивается, и чем больше протекающий по обмоткам ток – тем больше это воздействие.
В итоге общее расчётное напряжение (при расчётном токе) будет ниже.

Начнём с маленького трансформатора, придерживаясь вышеописанных особенностей (левый на фото).
Внимательно его осматриваем. Все выводы у него пронумерованы и провода подходят к следующим выводам; 1, 2, 4, 6, 8, 9, 10, 12, 13, 22, 23, и 27.
Дальше необходимо прозвонить омметром все выводы между собой, чтобы определить количество обмоток и нарисовать схему трансформатора.
Получается следующая картина.
Выводы 1 и 2 – сопротивление между ними 2,3 Ома, 2 и 4 – между ними 2,4 Ома, между 1 и 4 – 4,7 Ома (одна обмотка со средним выводом).
Дальше 8 и 10 – сопротивление 100,5 Ома (ещё одна обмотка). Выводы 12 и 13 – 26 Ом (ещё обмотка). Выводы 22 и 23 – 1,5 Ома (последняя обмотка).
Выводы 6, 9 и 27 не прозваниваются с другими выводами и между собой – это скорее всего экранные обмотки между сетевой и другими обмотками. Эти выводы в готовой конструкции соединяются между собой и присоединяются к корпусу (общий провод).
Ещё раз внимательно осматриваем трансформатор.
Сетевая обмотка, как мы знаем, мотается первой, хотя бывают и исключения.

На фото плохо видно, поэтому продублирую. К выводу 8 подпаян провод, выходящий от самого сердечника (то есть он к сердечнику ближе всех), потом идёт провод к выводу 10 – то есть обмотка 8-10 намотана первой (и имеет самое высокое активное сопротивление) и скорее всего является сетевой.
Теперь по полученным данным от прозвонки, можно нарисовать и схему трансформатора.

Остаётся попробовать подключить предполагаемую первичную обмотку трансформатора к сети 220 вольт и проверить ток холостого хода трансформатора.
Для этого собираем следующую цепь.

Последовательно с предполагаемой первичной обмоткой трансформатора (у нас это выводы 8-10), соединяем обычную лампу накаливания мощностью 40-65 ватт (для более мощных трансформаторов 75-100 ватт). Лампа в этом случае сыграет роль своеобразного предохранителя (ограничителя тока), и защитит обмотку трансформатора от выхода её из строя при подключении к сети 220 вольт, если мы выбрали не ту обмотку или обмотка не рассчитана на напряжение 220 вольт. Максимальный ток, протекающий в этом случае по обмотке (при мощности лампы 40 ватт), не превысит 180 миллиампер. Это убережёт Вас и испытываемый трансформатор от возможных неприятностей.

-И вообще, возьмите себе за правило, если Вы не уверены в правильности выбора сетевой обмотки, её коммутации, в установленных перемычках обмотки, то первое подключение к сети всегда производить с последовательно включённой лампой накаливания.

Соблюдая осторожность, подключаем собранную цепь к сети 220 вольт (у меня напряжение сети чуть больше, а точнее – 230 вольт).
Что видим? Лампа накаливания не горит.
Значит сетевая обмотка выбрана правильно и дальнейшее подключение трансформатора можно производить без лампы.
Подключаем трансформатор без лампы и измеряем ток холостого хода трансформатора.

Ток холостого хода (ХХ) трансформатора измеряется так; собирается аналогичная цепь, что мы собирали с лампой (рисовать уже не буду), только вместо лампы включается амперметр, который предназначен для измерения переменного тока (внимательно осмотрите свой прибор на наличие такого режима).
Амперметр сначала устанавливается на максимальный предел измерения, потом, если его много, амперметр можно перевести на более низкий предел измерения.
Соблюдая осторожность – подключаем к сети 220 вольт, лучше через разделительный трансформатор. Если трансформатор мощный, то щупы амперметра на момент включения трансформатора в сеть лучше закоротить или дополнительным выключателем, или просто закоротить между собой, так как пусковой ток первичной обмотки трансформатора превышает ток холостого хода в 100-150 раз и амперметр может выйти из строя. После того, как трансформатор включён в сеть – щупы амперметра разъединяются и измеряется ток.

Ток холостого хода трансформатора должен быть в идеале 3-8% от номинального тока трансформатора. Вполне считается нормальным и ток ХХ 5-10% от номинального. То есть если трансформатор с расчётной номинальной мощностью 100 ватт, ток потребления его первичной обмоткой будет 0,45 А, значит ток ХХ должен быть в идеале 22,5 мА (5% от номинала) и желательно, чтобы он не превышал 45 мА (10% от номинала).

Как видим, ток холостого хода чуть более 28 миллиампер, что вполне допустимо (ну может чуток завышен), так как на вид этот трансформатор мощностью 40-50 ватт.
Измеряем напряжения холостого хода вторичных обмоток. Получается на выводах 1-2-4 17,4 + 17,4 вольта, выводы 12-13 = 27,4 вольта, выводы 22-23 = 6,8 вольта (это при напряжении сети 230 вольт).
Дальше нам нужно определить возможности обмоток и их нагрузочные токи. Как это делается?
Если есть возможность и позволяет длина подходящих к контактам проводов обмоток, то лучше измерить диаметры проводов (грубо до 0,1 мм – штангенциркулем и точно микрометром), и по таблице ЗДЕСЬ , при средней плотности тока 3-4 А/мм.кв. – находим токи, которые способны выдать обмотки.
Если измерить диаметры проводов не представляется возможным, то поступаем следующим образом.
Нагружаем по очереди каждую из обмоток активной нагрузкой, в качестве которой может быть что угодно, например лампы накаливания различной мощности и напряжения (лампа накаливания мощностью 40 ватт на напряжение 220 вольт имеет активное сопротивление 90-100 Ом в холодном состоянии, лампа мощностью 150 ватт – 30 Ом), проволочные сопротивления (резисторы), нихромовые спирали от электро плиток, реостаты и т.д.
Нагружаем до тех пор, пока напряжение на обмотке не уменьшится на 10% относительно напряжения холостого хода.
Потом измеряем ток нагрузки.

Читайте также:  Что такое локальный ответ

Этот ток и будет являться максимальным током, который обмотка способна будет выдавать длительное время не перегреваясь.

Условно принята величина падения напряжения до 10% для постоянной (статической) нагрузки для того, чтобы не перегревался трансформатор. Вы вполне можете взять 15%, или даже 20%, в зависимости от характера нагрузки. Все эти расчёты приближённые. Если нагрузка постоянная (накал ламп например, зарядное устройство), то берётся меньшее значение, если нагрузка импульсная (динамическая), например УНЧ (за исключением режима "А"), то можно взять значение и больше, до 15-20%.

Я беру в расчёт статическую нагрузку, и у меня получилось; обмотка 1-2-4 ток нагрузки (при снижении напряжения обмотки на 10% относительно напряжения холостого хода) – 0,85 ампер (мощность около 27 ватт), обмотка 12-13 (на фото выше) ток нагрузки 0,19-0,2 ампера (5 ватт) и обмотка 22-23 – 0,5 ампер (3,25 ватт). Номинальная мощность трансформатора получается около 36 ватт (округляем до 40).

Да, ещё хочу рассказать о сопротивлении первичной обмотки.
Для маломощных трансформаторов оно может составлять десятки, или даже сотни Ом, а для мощных – единицы Ом.
Очень часто на форуме задают такие вопросы;
"Измерил мультиметром сопротивление первичной обмотки ТС250, а оно оказалось 5 Ом. Не мало ли оно для сети 220 вольт, я боюсь его включать в сеть. Подскажите – нормально ли оно?"

Так как все мультиметры измеряют сопротивление постоянному току (активное сопротивление), то волноваться не стоит, потому что для переменного тока частотой 50 герц эта обмотка будет иметь совсем другое сопротивление (индуктивное), которое будет зависеть от индуктивности обмотки и частоты переменного тока.
Если у Вас есть, чем измерить индуктивность, то Вы сами можете рассчитать сопротивление обмотки переменному току (индуктивное сопротивление).

Например;
Индуктивность первичной обмотки при измерении составила 6 Гн,, идём сюда и вводим эти данные (индуктивность 6 Гн, частота тока сети 50 Гц), смотрим – получилось 1884,959 (округляем 1885), это и будет индуктивное сопротивление этой обмотки для частоты 50 Гц. Отсюда Вы можете вычислить и ток холостого хода этой обмотки для напряжения 220 вольт – 220/1885=0.116 А (116 миллиампер), да, сюда ещё можно добавить и активное сопротивление 5 Ом, то есть будет 1890.
Естественно, что для частоты 400 Гц будет совсем другое сопротивление этой обмотки.

Аналогично проверяются и другие трансформаторы.
На фото второго трансформатора видно, что выводы подпаяны к контактным лепесткам 1, 3, 4, 6, 7, 8, 10, 11, 12.
После прозвонки становится ясно, что у трансформатора 4 обмотки.
Первая на выводах 1 и 6 (24Ома), вторая 3-4 (83 Ома), третья 7-8 (11,5 Ом), четвёртая 10-11-12 с отводом от середины (0,1+0,1 Ом).

Причём хорошо видно, что обмотка 1 и 6 намотана первой (белые выводы), потом идёт обмотка 3-4 (чёрные выводы).
24 Ома активного сопротивления первичной обмотки вполне достаточно. У более мощных трансформаторов активное сопротивление обмотки доходит до единиц Ом.
Вторая обмотка 3-4 (83 Ома), возможно повышающая.
Здесь можно замерить диаметры проводов всех обмоток, кроме обмотки 3-4, выводы которой выполнены чёрным, многожильным, монтажным проводом.

Дальше подключаем трансформатор через лампу накаливания. Лампа не горит, трансформатор на вид мощностью 100-120, замеряем ток холостого хода, получается 53 миллиампера, что вполне допустимо.
Замеряем напряжения холостого хода обмоток. Получается 3-4 – 233 вольта, 7-8 – 79,5 вольта, и обмотка 10-11-12 по 3,4 вольта (6,8 со средним выводом). Обмотку 3-4 нагружаем до падения напряжения на 10% от напряжения холостого хода, и измеряем протекающий ток через нагрузку.

Максимальный ток нагрузки этой обмотки, как видно из фотографии – 0,24 ампера.
Токи других обмоток определяются из таблицы плотности тока, исходя из диаметра провода обмоток.
Обмотка 7-8 намотана проводом 0,4 и накальная проводом 1,08-1,1. Соответственно токи получаются 0,4-0,5 и 3,5-4,0 ампера. Номинальная мощность трансформатора получается около 100 ватт.

Остался ещё один трансформатор. У него контактная планка с 14-ю контактами, верх 1, 3, 5, 7, 9, 11, 13 и низ соответственно чётные. Он мог переключаться на различные напряжения сети (127,220.237) вполне возможно, что первичная обмотка имеет несколько отводов, или состоит из двух полу-обмоток с отводами.
Прозваниваем, и получается такая картина:
Выводы 1-2 = 2,5 Ом; 2-3 = 15,5 Ом (это одна обмотка с отводом); 4-5 = 16,4 Ом; 5-6 = 2,7 Ом (ещё одна обмотка с отводом); 7-8 = 1,4 Ома (3-я обмотка); 9-10 = 1,5 Ом (4-я обмотка);11-12 = 5 Ом (5-я обмотка) и 13-14 (6-я обмотка).
Подключаем к выводам 1 и 3 сеть с последовательно включённой лампой накаливания.

Лампа горит в половину накала. Измеряем напряжение на выводах трансформатора, оно равняется 131 вольт.
Значит не угадали и первичная обмотка здесь состоит из двух частей, и подключенная часть при напряжении 131 вольт начинает входить в насыщение (повышается ток холостого хода) и по этому нить лампы раскалилась.
Соединяем перемычкой выводы 3 и 4, то есть последовательно две обмотки и подключаем сеть (с лампой) к выводам 1 и 6.
Ура, лампа не горит. Измеряем ток холостого хода.

Ток холостого хода равен 34,5 миллиампер. Здесь скорее всего (так, как часть обмотки 2-3, и часть второй обмотки 4-5 имеют большее сопротивление, то эти части рассчитаны на 110 вольт, а части обмоток 1-2 и 5-6 по 17 вольт, то есть общее для одной части 1278 вольт) 220 вольт подключалось к выводам 2 и 5 с перемычкой на выводах 3 и 4 или наоборот. Но можно оставить и так, как мы подключили, то есть все части обмоток последовательно. Для трансформатора это только лучше.
Всё, сеть нашли, дальнейшие действия аналогичны описанным выше.

Ещё немного о стержневых трансформаторах. Например имеется такой (фото выше). Какие для них общие особенности?

– У стержневых трансформаторов, как правило две симметричные катушки, и сетевая обмотка разделена на две катушки, то есть на одной катушке намотано витков на 110 (127) вольт , и на другой. Нумерация выводов одной катушки – аналогична другой, номера выводы на другой катушке помечаются (или условно помечаются) штрихом, т.е. 1′, 2′ и т.д.

– Сетевая обмотка, как правило, мотается первой (ближе всех к сердечнику).

– Сетевая обмотка может иметь отводы, или состоять из двух частей (например одна обмотка – выводы 1-2-3; или две части – выводы 1-2 и 3-4).

-У стержневого трансформатора магнитный поток движется по сердечнику (по "кругу, эллипсу"), и направление магнитного потока одного стержня будет противоположно другому, поэтому для последовательного соединения двух половин обмоток, на разных катушках соединяют одноимённые контакты или начало с началом (конец с концом), т.е. 1 и 1′, сеть подают на 2-2′, или 2 и 2′, сеть подают тогда на 1 и 1′.

– Для последовательного соединения обмоток, состоящих из двух частей на одной катушке – обмотки соединяют как обычно, начало с концом или конец с началом, (н-к или к-н), то есть вывод 2 и 3 (если, например имеются 2 обмотки с номерами выводов 1-2 и 3-4), так же и на другой катушке. Дальнейшее последовательное соединение получившихся двух полу-обмоток на разных катушках, смотри пунктом выше. (Пример такого соединения на схеме трансформатора ТС-40-1).

– Для параллельного соединения обмоток ( только для обмоток с одинаковым количеством витков ) на одной катушке соединение производится как обычно (н-н и к-к, или выводы 1-3 и 2-4 – если например имеются одинаковые обмотки с выводами 1-2 и 3-4). Для разных катушек соединение производится следующим образом, к-н- отвод и н-к- отвод, или соединяются выводы 1-2′ и 2-1′ – если, например имеются одинаковые обмотки с выводами 1-2 и 1′-2′.

Ещё раз напоминаю о соблюдении техники безопасности, и лучше всего для экспериментов с напряжением 220 вольт иметь дома разделительный трансформатор (трансформатор с обмотками 220/220 вольт для гальванической развязки с промышленной сетью), который защитит от поражения током, при случайном прикосновении к оголённому концу провода.

Если возникнут какие то вопросы по статье, или найдёте в загашниках трансформатор (с подозрением, что он силовой), задавайте вопросы ЗДЕСЬ , поможем разобраться с его обмотками и подключением к сети.

Оцените статью
Добавить комментарий

Adblock
detector