Угол лежащий на дуге окружности равен

Вписанные и центральные углы
Углы, образованные хордами, касательными и секущими
Доказательства теорем об углах, связанных с окружностью

Вписанные и центральные углы

Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).

Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).

Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.

Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.

Теоремы о вписанных и центральных углах

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Фигура Рисунок Теорема
Вписанный угол
Вписанный угол Вписанные углы, опирающиеся на одну и ту же дугу равны.
Вписанный угол Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды
Вписанный угол Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды
Вписанный угол Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр
Окружность, описанная около прямоугольного треугольника

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Вписанные углы, опирающиеся на одну и ту же дугу равны.

Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды

Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды

Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Теоремы об углах, образованных хордами, касательными и секущими

Вписанный угол
Окружность, описанная около прямоугольного треугольника

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Фигура Рисунок Теорема Формула
Угол, образованный пересекающимися хордами
Угол, образованный секущими, которые пересекаются вне круга
Угол, образованный касательной и хордой, проходящей через точку касания
Угол, образованный касательной и секущей
Угол, образованный двумя касательными к окружности

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Угол, образованный пересекающимися хордами хордами
Формула:
Угол, образованный секущими секущими , которые пересекаются вне круга
Формула:

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный касательной и хордой хордой , проходящей через точку касания
Формула:
Угол, образованный касательной и секущей касательной и секущей
Формула:

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный двумя касательными касательными к окружности
Формулы:

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Доказательства теорем об углах, связанных с окружностью

Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

В этом случае справедливы равенства

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

В этом случае справедливы равенства

что и завершает доказательство теоремы 1.

Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 8.

Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

что и требовалось доказать.

Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 9.

Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

что и требовалось доказать.

Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

Доказательство . Рассмотрим рисунок 10.

Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

что и требовалось доказать

Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 11.

Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

что и требовалось доказать.

Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 12.

Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

Хочешь подготовиться к ОГЭ или ЕГЭ по математике на отлично?

Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Основные термины.

Хорошо ли ты помнишь все названия, связанные с окружностью? На всякий случай напомним – смотри на картинки – освежай знания.

Ну, во-первых – центр окружности – такая точка, расстояния от которой до всех точек окружности одинаковые.

Во-вторых – радиусотрезок, соединяющий центр и точку на окружности.

Радиусов очень много (столько же, сколько и точек на окружности), но длина у всех радиусов – одинаковая.

Иногда для краткости радиусом называют именно длину отрезка «центр – точка на окружности», а не сам отрезок.

А вот что получится, если соединить две точки на окружности? Тоже отрезок?

Так вот, этот отрезок называется «хорда».

Тут есть ещё одно принятое выражение: «хорда стягивает дугу». Вот, здесь на рисунке, например, хорда стягивает дугу . А если хорда вдруг проходит через центр, то у неё есть специальное название: «диаметр».

Так же, как и в случае с радиусом, диаметром часто называют длину отрезка, соединяющего две точки на окружности и проходящего через центр. Кстати, а как связаны диаметр и радиус? Посмотри внимательно. Конечно же, радиус равен половине диаметра.

Кроме хорд бывают еще и секущие.

Вспомнили самое простое?

А теперь – названия для углов.

Центральный угол – угол между двумя радиусами.

Естественно, не правда ли? Стороны угла выходят из центра – значит, угол – центральный.

А теперь – вписанный угол

Вписанный угол – угол между двумя хордами, которые пересекаются в точке на окружности.

При этом говорят, что вписанный угол опирается на дугу (или на хорду) .

Вот здесь иногда возникают сложности. Обрати внимание – НЕ ЛЮБОЙ угол внутри окружности – вписанный, а только такой, у которого вершина «сидит» на самой окружности.

Смотри на картинку:

Измерения дуг и углов.

Длина окружности. Дуги и углы измеряются в градусах и радианах. Сперва о градусах. Для углов проблем нет – нужно научиться измерить дугу в градусах.

Градусная мера (величина дуги) – это величина (в градусах) соответствующего центрального угла

Что здесь значит слово «соответствующего»? Смотрим внимательно:

Видишь две дуги и два центральных угла? Ну вот, большей дуге соответствует больший угол (и ничего страшного, что он больше ), а меньшей дуге соответствует меньший угол.

Итак, договорились: в дуге содержится столько же градусов, сколько в соответствующем центральном угле.

А теперь о страшном – о радианах!

Что же это за зверь такой «радиан»?

Представь себе: радианы – это способ измерения угла … в радиусах!

Угол величиной радиан – такой центральный угол, длина дуги которого равна радиусу окружности.

Тогда возникает вопрос – а сколько же радиан в развёрнутом угле?

Иными словами: сколько радиусов «помещается» в половине окружности? Или ещё по-другому: во сколько раз длина половины окружности больше радиуса?

Этим вопросом задавались учёные ещё в Древней Греции.

И вот, после долгих поисков они обнаружили, что отношение длины окружности к радиусу никак не хочет выражаться «человеческими» числами вроде и т.п.

И даже не получается выразить это отношение через корни. То есть, оказывается, нельзя сказать, что половина окружности в раза или в раз больше радиуса! Представляешь, как удивительно это было обнаружить людям впервые?! Для отношения длины половины окружности к радиусу на хватило «нормальных» чисел. Пришлось вводить букву .

Итак, – это число, выражающее отношение длины полуокружности к радиусу.

Теперь мы можем ответить на вопрос: сколько радиан в развёрнутом угле? В нём радиан. Именно оттого, что половина окружности в раз больше радиуса.

Древние (и не очень) люди на протяжении веков (!) попытались поточнее подсчитать это загадочное число , получше выразить его (хоть приблизительно) через «обыкновенные» числа. А мы сейчас до невозможности ленивы – нам достаточно двух знаков после занятой, мы привыкли, что

Задумайся, это значит, например, что y окружности с радиусом единица длина приблизительно равна , а точно эту длину просто невозможно записать «человеческим» числом – нужна буква . И тогда эта длина окружности окажется равной . И конечно, длина окружности радиуса равна .

Вернёмся к радианам.

Мы выяснили уже, что в развёрнутом угле содержится радиан.

Исходя из этого, можно пересчитать любые углы «в градусах» на углы «в радианах». Для этого нужно просто решить пропорцию! Давай попробуем. Возьмём угол в .

Значит, рад., то есть рад. Таким же образом получается табличка с наиболее популярными углами.

Итак, осознай и не бойся: если ты видишь букву или выражение и т.п., то речь идёт об угле и, по сути, запись через букву всегда выражает, какую часть от развёрнутого угла составляет тот угол, о котором идёт речь. А для убедительности ещё раз взгляни на табличку

Читайте также:  Что такое режим тесселяции amd
от , то есть от
от , то есть от
от , то есть от
это и есть
в раза больше, чем
А это раза по , то есть

Соотношение между величинами вписанного и центрального углов.

Имеет место удивительный факт:

Величина вписанного угла вдвое меньше, чем величина соответствующего центрального угла.

Посмотри, как это утверждение выглядит на картинке. «Соответствующий» центральный угол такой, у которого концы совпадают с концами вписанного угла, а вершина в центре. И при этом «соответствующий» центральный угол должен «смотреть» на ту же хорду ( ), что и вписанный угол.

Почему же так? Давай разберёмся сначала на простом случае. Пусть одна из хорд проходит через центр. Ведь бывает же так иногда, верно?

Что же тут получается? Рассмотрим . Он равнобедренный – ведь и – радиусы. Значит, (обозначили их ).

Теперь посмотрим на . Это же внешний угол для ! Вспоминаем, что внешний угол равен сумм двух внутренних, не смежных с ним, и записываем:

То есть ! Неожиданный эффект. Но и есть центральный угол для вписанного .

Значит, для этого случая доказали, что центральный угол вдвое больше вписанного. Но уж больно частный случай: правда ведь, далеко не всегда хорда проходит прямиком через центр? Но ничего, сейчас этот частный случай нам здорово поможет. Смотри: второй случай: пусть центр лежит внутри .

Давай сделаем вот что: проведём диаметр . И тогда … видим две картинки, которые уже разбирали в первом случае. Поэтому уже имеем, что

Значит, (на чертеже , а )

Ну вот, и остался последний случай: центр вне угла .

Делаем то же самое: проводим диаметр через точку . Все то же самое, но вместо суммы – разность.

Читайте также:  Установка oracle database 11g на linux

Давай теперь сформируем два главных и очень важных следствия из утверждения о том, что вписанный угол вдвое меньше центрального.

Следствие 1

Все вписанные углы, опирающиеся на одну дугу, равны между собой.

Вписанных углов, опирающихся на одну и ту же дугу (у нас эта дуга ) – бесчисленное множество, они могут выглядеть совсем по-разному, но у них у всех один и тот же центральный угол ( ), а значит, все эти вписанные углы равны между собой.

Следствие 2

Угол, опирающийся на диаметр – прямой.

Смотри: какой угол является центральным для ?

Конечно, . Но он равен ! Ну вот, поэтому (а так же ещё множество вписанных углов, опирающихся на ) и равен .

Угол между двумя хордами и секущими

А что, если интересующий нас угол НЕ вписанный и НЕ центральный, а, например, такой:

Можно ли его как-то выразить всё-таки через какие-то центральные углы? Оказывается, можно. Смотри: нас интересует .

a) ( как внешний угол для ). Но – вписанный, опирается на дугу – . – вписанный, опирается на дугу – .

Для красоты говорят:

Угол между хордами равен полусумме угловых величин дуг, заключённых в этот угол.

– так пишут для краткости, но конечно, при использовании этой формулы нужно иметь в виду центральные углы

b) А теперь – «снаружи»! Как же быть? Да почти так же! Только теперь (снова применяем свойство внешнего угла для ). То есть теперь .

И значит, . Наведём красоту и краткость в записях и формулировках:

Угол между секущими равен полуразности угловых величин дуг, заключённых в этот угол.

Ну вот, теперь ты вооружён всеми основными знаниями об углах, связанных с окружностью. Вперёд, на штурм задач!

Читайте также:  Что такое раздел восстановления

ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER!

Стать учеником YouClever,

Подготовиться к ОГЭ или ЕГЭ по математике,

А также получить доступ к учебнику YouClever без ограничений.

Вписанный угол — угол, вершина которого лежит на окружности, а обе стороны пересекают эту окружность.

Содержание

Теорема о вписанном угле [ править | править код ]

  • Теорема о вписанном угле: Вписанный угол равен половине центрального угла, опирающегося на ту же дугу, и равен половине дуги, на которую он опирается, либо дополняет половину центрального угла до 180°.

Пусть ∠ A B C <displaystyle angle ABC> — вписанный угол окружности с центром O <displaystyle O> , опирающийся на дугу A C <displaystyle AC> . Докажем, что ∠ A B C = ∠ A O C / 2 <displaystyle angle ABC=angle AOC/2> . Рассмотрим три возможных случая расположения луча ВО относительно угла АВС.

1. Луч B O <displaystyle BO> совпадает с одной из сторон ∠ A B C <displaystyle angle ABC> , например со стороной B C <displaystyle BC> . В этом случае дуга A C <displaystyle AC> меньше полуокружности, поэтому ∠ A O C = A C <displaystyle angle AOC=AC> . Так как ∠ A O C <displaystyle angle AOC> — внешний угол равнобедренного △ A B O <displaystyle riangle ABO> , а углы при основании равнобедренного треугольника равны, один из них это ∠ A B C <displaystyle angle ABC> , значит их сумма равна 2 ∠ A B C <displaystyle 2angle ABC> , a ∠ A O C = 2 ∠ A B C <displaystyle angle AOC=2angle ABC> . Отсюда следует, что ∠ A B C = 0 , 5 ∠ A O C <displaystyle angle ABC=0<,>5angle AOC> . 2. Луч B O <displaystyle BO> делит ∠ A B C <displaystyle angle ABC> на два угла. В этом случае луч B O <displaystyle BO> пересекает дугу A C <displaystyle AC> в некоторой точке D <displaystyle D> . Точка D <displaystyle D> разделяет дугу A C <displaystyle AC> на две дуги: A D <displaystyle AD> и D C <displaystyle DC> . По доказанному в п.1 ∠ A B D = 0 , 5 A D <displaystyle angle ABD=0<,>5AD> и ∠ D B C = 0 , 5 D C <displaystyle angle DBC=0<,>5DC> . Складывая эти равенства почленно, получаем: ∠ A B D + ∠ D B C = 0 , 5 A D + 0 , 5 D C <displaystyle angle ABD+angle DBC=0<,>5AD+0<,>5DC> , или ∠ A B C = 0 , 5 A C <displaystyle angle ABC=0<,>5AC> . 3. Луч B O <displaystyle BO> лежит вне ∠ A B C <displaystyle angle ABC> . В этом случае дуга A C <displaystyle AC> составляет часть дуги A D <displaystyle AD> . По доказанному в п.1 ∠ A B D = 0 , 5 A D <displaystyle angle ABD=0<,>5AD> и ∠ D B C = 0 , 5 D C <displaystyle angle DBC=0<,>5DC> . ∠ A B C = ∠ A B D − ∠ D B C = 0 , 5 A D − 0 , 5 D C = 0 , 5 ( A D − D C ) <displaystyle angle ABC=angle ABD-angle DBC=0<,>5AD-0<,>5DC=0<,>5(AD-DC)> . Т.к. дуга A C = A D − D C <displaystyle AC=AD-DC> , то ∠ A B C = 0 , 5 A C <displaystyle angle ABC=0<,>5AC> .

Следствия [ править | править код ]

  • Вписанные углы, опирающиеся на одну дугу, равны.
  • Угол, опирающийся на диаметр, — прямой.
  • Гипотенуза прямоугольного треугольника является диаметром описанной около него окружности.
  • Угол между касательной и хордой является предельным случаем вписанного угла и также равен половине дуги, на которую опирается.
  • Угол между двумя хордами равен полусумме дуг, заключенных между хордами.
  • Метод вспомогательной окружности [ править | править код ]

    На теореме о вписанном угле основан метод решения геометрических задач, так называемый метод вспомогательной окружности. Идея метода состоит в использовании теоремы о вписанном угле и её обратной для нахождения вписанных четырёхугольников и далее использовании их для нахождения углов. [1] Следующая задача является классическим примером на использование этого метода:

    • Предположим три прямые проходящие через одну точку делят плоскость на 6 равных углов. Доказать, что ортогональные проекции произвольной точки на эти три прямые образуют правильный треугольник.
    Оцените статью
    Добавить комментарий

    Adblock
    detector