Уравнение гармонических колебаний пружинного маятника

Периодические колебания называются гармоническими, если колеблющаяся величина меняется с течением времени по закону косинуса или синуса:

.

Здесь – циклическая частота колебаний,A – максимальное отклонение колеблющейся величины от положения равновесия (амплитуда колебаний), φ(t) = ωt+φфаза колебаний, φначальная фаза.

График гармонических колебаний представлен на рисунке 1.

Рисунок 1 – График гармонических колебаний

При гармонических колебаниях полная энергия системы с течением времени не изменяется. Можно показать, что полная энергия механической колебательной системы при гармонических колебаниях равна:

.

Гармонически колеблющаяся величина s(t) подчиняется дифференциальному уравнению:

, (1)

которое называется дифференциальным уравнением гармонических колебаний.

Математическим маятником называется материальная точка, подвешенная на нерастяжимой невесомой нити, совершающая колебательное движение в одной вертикальной плоскости под действием силы тяжести.

– период кодебаний

Физическим маятником называется твердое тело, закрепленное на неподвижной горизонтальной ocи (оси подвеса), не проходящей через центр тяжести, и совершающее колебания относительно этой оси под действием силы тяжести. В отличие от математического маятника массу такого тела нельзя считать точечной.

При небольших углах отклонения α (рис. 7.4) физический маятник так же совершает гармонические колебания. Будем считать, что вес физического маятника приложен к его центру тяжести в точке С. Силой, которая возвращает маятник в положение равновесия, в данном случае будет составляющая силы тяжести – сила F.

Для вывода закона движения математического и физического маятников используем основное уравнение динамики вращательного движения

. Момент силы: определить в явном виде нельзя. С учетом всех величин, входящих в исходное дифференциальное уравнение колебаний физического маятника имеет вид:

Решение этого уравнения

Определим длину l математического маятника, при которой период его колебаний равен периоду колебаний физического маятника, т.е. или

. Из этого соотношения определяем

Данная формула определяет приведенную длину физического маятника, т.е. длину такого математического маятника, период колебаний которого равен периоду колебаний данного физического маятника.

Это груз, прикрепленный к пружине, массой которой можно пренебречь.

Пока пружина не деформирована, сила упругостина тело не действует. В пружинном маятнике колебания совершаются под действием силы упругости.

Вопрос 36 Энергия гармонических колебаний

При гармонических колебаниях полная энергия системы с течением времени не изменяется. Можно показать, что полная энергия механической колебательной системы при гармонических колебаниях равна:

.

Потенциальная энергия U тела, смещенного на расстояние х от положения равновесия, измеряется той работой, которую произведет возвращающая сила , перемещая тело в положение равновесия.

Заменив в (1.5.2) и сложив почленно уравнения кинетической и потенциальной энергии, получим выражение для полной энергии:

Полная механическая энергия гармонически колеблющегося тела пропорциональна квадрату амплитуды колебания.

Рассмотрим систему, которая состоит из:

  • упругой спиральной пружины,
  • очень небольшого тела массы $m$.

Один конец пружины закреплен, к другому концу прикреплено тело $m$ рис.1.

Рисунок 1. Пружинный маятник. Автор24 — интернет-биржа студенческих работ

Длина пружины без деформации равна $l_0$. При растяжении или сжатии этой пружины до длины $l$ возникает сила упругости ($vec F$), которая хочет вернуть пружине первоначальную длину. Если изменения длины пружины мало и равно:

то выполняется закон Гука, в соответствии с которым сила упругости прямо пропорциональна изменению длины пружины:

где $k$ – коэффициент упругости пружины.

Уравнение колебаний пружинного маятника

В таком случае уравнение движения тела, которое присоединено к концу пружины можно записать так:

$momega^2=k$, тогда дифференциальное уравнение (3) можно переписать в виде:

$y=y_mcos (omega t+delta) (5),$

где $y_m$ – амплитуда колебаний (максимальное смещение груза от положения равновесия), является решением уравнения (4) при любых постоянных значениях $y_m$ и $delta$.

Попробуй обратиться за помощью к преподавателям

Частота и период колебаний пружинного маятника

Груз на пружине выполняет гармонические колебания:

круговая (циклическая) частота которых равна:

период колебаний составляет:

частота колебаний его:

Мы видим в (7), что период колебаний пружинного маятника не зависит от амплитуды. Данное свойство колебаний называют изохронностью. Колебания пружинного маятника являются изохронными, пока выполняется закон Гука. Если растяжения становятся большими, то закон Гука будет нарушаться, тогда возникает зависимость периода колебаний от амплитуды.

Амплитуда и начальная фаза колебаний пружинного маятника

Амплитуду колебаний ($y_m$) и начальную фазу ($delta$) невозможно определить из дифференциального уравнения (4). Данные неизменные параметры колебаний определяют исходя из начальных условий колебаний. Например, задают:

  • смещение $y$ в момент времени принимаемы за $t=0$;
  • и начальную скорость ($dot$) в этот же момент времени.

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Дифференциальное уравнение (4) справедливо при любых начальных условиях. Поскольку это уравнение может описывать любые колебания, которые способна совершать наша колебательная система. Конкретное колебание выделяют из этого комплекса при определении постоянных $y_m$ и $delta$.

Энергия колебаний пружинного маятника

Потенциальная энергия тела, подвешенного на пружине, задается выражением:

Принимая во внимание гармонический закон изменения $y$ (5), получим, что потенциальная энергия изменяется во времени:

$U(t)=frac <2>cos^2 (omega t+delta)=frac<1><4>k y_m^2(1+cos 2(omega t+delta)) (10).$

Кинетическую энергию определяют как:

Скорость движения тела на пружине вдоль оси $Y$ найдем как первую производную от $y(t)$ по времени:

$v=v_y=dot=-y_momegasin (omega t+delta)(12).$

Закон изменения кинетической энергии в зависимости от времени с учетом (12) запишем как:

Читайте также:  Шкаф над изголовьем кровати

$E_k=m y_m^2omega^2sin^2 (omega t+delta) (13),$

где учитывая формулу (6), окончательно получим:

$E_k=k y_m^2sin^2 (omega t+delta)=frac<1><4>k y_m^2(1-cos 2(omega t+delta)) (14).$

Формулы (10) и (14) показывают, что кинетическая и потенциальная энергии колеблющегося пружинного маятника изменяются во времени. Они сами выполняют гармонические колебания около средней величины, равной $frac<1> <4>k y_m^2$ с удвоенной циклической частотой $2omega$.

В тот момент времени, когда кинетическая энергия максимальна, потенциальная энергия равна нулю и наоборот. При этом полная механическая энергия, равная сумме кинетической и потенциальной энергии не изменяется:

При этом полная энергия колебаний пружинного маятника, если учесть выражения (10) и (14), равна:

Выражение (5) является решением дифференциального уравнения (15), если круговая частота колебаний определятся при помощи выражения (6), амплитуда – формулой (16). Так, если задана полная механическая энергия $E$, то амплитуда колебаний ($y_m$) не является произвольной величиной. При этом произвол имеется только в определении начальной фазы колебаний $delta$, которую определяют начальные условия. Чтобы определить $delta$ достаточно одного начального условия:

  • либо нужно иметь начальное смещение;
  • либо начальную скорость.

Наличие в решении единственной произвольной константы связывают с тем, что уравнение (15) является дифференциальным уравнением первого порядка по времени.

Заметим, что энергию в уравнении (15) можно рассматривать как параметр, принимающий любые значения большие нуля, которые определяют начальные условия колебаний. В этом случае уравнение (15) считают эквивалентным уравнению (4).

На основе закона сохранения энергии (15) сделаем следующие выводы:

Наибольшая кинетическая энергия пружинного маятника равна его наибольшей энергии потенциальной энергии.

Данный вывод очевиден, так как потенциальная энергия маячтника максимальна при смещении точки выполняющей колебания на максимально возможное расстояние, при этом скорость, а соответственно и кинетическая энергия осциллятора равна нулю.

Наибольшую кинетическую энергию колебательная система имеет тогда, когда она проходит положение равновесия ($x=0$), то есть потенциальная энергия равна нулю.

где $V$ – максимальная скорость.

Средняя кинетическая энергия пружинного маятника ($E_$) равна его средней потенциальной энергии ($U_$).

Сравнивая (18) и (19) мы видим, что:

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

Работа большинства механизмов основана на простейших законах физики и математики. Довольно большое распространение получило понятие пружинного маятника. Подобный механизм получил весьма широкое распространение, так как пружина обеспечивает требуемую функциональность, может быть элементом автоматических устройств. Рассмотрим подробнее подобное устройство, принцип действия и многие другие моменты подробнее.

Определения пружинного маятника

Как ранее было отмечено, пружинный маятник получил весьма широкое распространение. Среди особенностей можно отметить следующее:

  1. Устройство представлено сочетанием груза и пружины, масса которой может не учитываться. В качестве груза может выступать самый различный объект. При этом на него может оказываться воздействие со стороны внешней силы. Распространенным примером можно назвать создание предохранительного клапана, который устанавливается в системе трубопровода. Крепление груза к пружине проводится самым различным образом. При этом используется исключительно классический винтовой вариант исполнения, который получил наиболее широкое распространение. Основные свойства во многом зависят от типа применяемого материала при изготовлении, диаметра витка, правильности центровки и многих других моментов. Крайние витки часто изготавливаются таким образом, чтобы могли воспринимать большую нагрузку при эксплуатации.
  2. До начала деформации полная механическая энергия отсутствует. При этом на тело не влияет сила упругости. Каждая пружина имеет исходное положение, которое она сохраняет на протяжении длительного периода. Однако, за счет определенной жесткости происходит фиксация тела в начальном положении. Имеет значение то, каким образом прикладывается усилие. Примером назовем то, что она должна быть направлена вдоль оси пружины, так как в противном случае есть вероятность появления деформации и многих других проблем. У каждой пружины есть свои определенный придел сжатия и растяжения. При этом максимальное сжатие представлено отсутствием зазора между отдельными витками, при растяжении есть момент, когда происходит невозвратная деформация изделия. При слишком сильном удлинении проволоки происходит изменение основных свойств, после чего изделие не возвращается в свое первоначальное положение.
  3. В рассматриваемом случае колебания совершаются за счет действия силы упругости. Она характеризуется довольно большим количество особенностей, которые должны учитываться. Воздействие упругости достигается за счет определенного расположения витков и типа применяемого материала при изготовлении. При этом сила упругости может действовать в обе стороны. Чаще всего происходит сжатие, но также может проводится растяжение – все зависит от особенностей конкретного случая.
  4. Скорость перемещения тела может варьировать в достаточно большом диапазоне, все зависит от того, какое оказывается воздействие. К примеру, пружинный маятник может перемещать подвешенный груз в горизонтальной и вертикальной плоскости. Действие направленного усилия во многом зависит от вертикальной или горизонтальной установки.

В целом можно сказать, что пружинный маятник определение довольно обобщенное. При этом скорость перемещения объекта зависит от различных параметров, к примеру, величины приложенного усилия и других моментов. Перед непосредственным проведением расчетов проводится создание схемы:

  1. Указывается опора, к которой крепится пружина. Зачастую для ее отображения рисуется линия с обратной штриховкой.
  2. Схематически отображается пружина. Она часта представлена волнистой линией. При схематическом отображении не имеет значение длина и диаметральный показатель.
  3. Также изображается тело. Оно не должно соответствовать размерам, однако имеет значение место непосредственного крепления.

Схема требуется для схематического отображения всех сил, которые оказывают влияние на устройство. Только в этом случае можно учесть все, что влияет на скорость перемещения, инерцию и многие другие моменты.

Пружинные маятники применяются не только при расчетах ил решении различных задач, но также и на практике. Однако, не все свойства подобного механизма применимы.

Примером можно назвать случай, когда колебательные движения не требуются:

  1. Создание запорных элементов.
  2. Пружинные механизмы, связанные с транспортировкой различных материалов и объектов.
Читайте также:  Функция variospeed что это

Проводимые расчеты пружинного маятника позволяют подобрать наиболее подходящий вес тела, а также тип пружины. Она характеризуется следующими особенностями:

  1. Диаметр витков. Он может быть самым различным. От показателя диаметра во многом зависит то, сколько требуется материала для производства. Диаметр витков также определяет то, какое усилие должно прикладываться для полного сжатия или частичного растяжения. Однако, увеличение размеров может создать существенные трудности с установкой изделия.
  2. Диаметр проволоки. Еще одним важным параметром можно назвать диаметральный размер проволоки. Он может варьировать в широком диапазоне, зависит прочность и степень упругости.
  3. Длина изделия. Этот показатель определяет то, какое усилие требуется для полного сжатия, а также какой упругостью может обладать изделие.
  4. Тип применяемого материала также определяет основные свойства. Чаще всего пружина изготавливается при применении специального сплава, который обладает соответствующие свойствами.

При математических расчетах многие моменты не учитываются. Усилие упругости и многие другие показатели выявляются путем расчета.

Виды пружинного маятника

Выделяют несколько различных видов пружинного маятника. Стоит учитывать, что классификация может проводится по типу устанавливаемой пружины. Среди особенностей отметим:

  1. Довольно большое распространение получили вертикальные колебания, так как в этом случае на груз не оказывается сила трения и другое воздействие. При вертикальном расположении груза существенно увеличивается степень воздействия силы тяжести. Распространен этот вариант исполнения при проведении самых различных расчетов. За счет силы тяжести есть вероятность того, что тело в исходной точке будет совершать большое количество инерционных движений. Этому также способствует упругость и инерция движения тела в конце хода.
  2. Также применяется горизонтальный пружинный маятник. В этом случае груз находится на опорной поверхности и на момент перемещения также возникает трение. При горизонтальном расположении сила тяжести работает несколько иначе. Горизонтальное расположение тела получило широкое распространение в различных задачах.

Рассчитывается движение пружинного маятника можно при использовании достаточно большого количества различных формул, который должны учитывать воздействие всех сил. В большинстве случаев устанавливается классическая пружина. Среди особенностей отметим следующее:

  1. Классическая витая пружина сжатия сегодня получила весьма широкое распространение. В этом случае между витками есть пространство, которое называется шагом. Пружина сжатия может и растягиваться, но зачастую она для этого не устанавливается. Отличительной особенностью можно назвать то, что последние витки выполнены в виде плоскости, за счет чего обеспечивается равномерное распределения усилия.
  2. Может устанавливаться вариант исполнения для растяжения. Он рассчитан на установку в случае, когда приложенное усилие становится причиной увеличения длины. Для крепления проводится размещение крючков.

Распространены оба варианта исполнения. При этом важно уделить внимание тому, чтобы сила прикладывалась параллельно оси. В противном случае есть вероятность смещения витков, что становится причиной возникновения серьезных проблем, к примеру, деформации.

Сила упругости в пружинном маятнике

Следует учитывать тот момент, что до деформирования пружины она находится в положении равновесия. Приложенная сила может приводить к ее растягиванию и сжиманию. Сила упругости в пружинном маятнике рассчитывается в соответствии с тем, как воздействует закон сохранения энергии. Согласно принятым нормам возникающая упругость пропорциональна смещению тела. В этом случае кинетическая энергия рассчитывается по формуле: F=-kx. В данном случае применяется коэффициент жесткости пружины.

Выделяют довольно большое количество особенностей воздействия силы упругости в пружинном маятнике. Среди особенностей отметим:

  1. Максимальная сила упругости возникает на момент, когда тело находится на максимальном расстоянии от положения равновесия. При этом в подобном положении отмечается максимальное значение ускорение тела. Не следует забывать о том, что может проводится растягивание и сжатие пружины, оба варианта несколько отличается. При сжатии минимальная длина изделия ограничивается. Как правило, она имеет длину, равную диаметру витка умноженное на количество. Слишком большое усилие может стать причиной смещения витков, а также деформации проволоки. При растяжении есть момент удлинения, после которого происходит деформация. Сильное удлинение приводит к тому, что возникающей силы упругости недостаточно для возврата изделия в первоначальное состояние.
  2. При сближении тела к месту равновесия происходит существенное уменьшение длины пружины. За счет этого наблюдается постоянное снижение показателя ускорения. Все это происходит за счет воздействия усилия упругости, которая связано с типом применяемого материала при изготовлении пружины и ее особенностями. Длина уменьшается за счет того, что расстояние между витками снижается. Особенностью можно назвать равномерное распределение витков, лишь только в случае дефектов есть вероятность нарушения подобного правила.
  3. На момент достижения точки равновесия сила упругости снижается до нуля. Однако, скорость не снижается, так как тело движется по инерции. Точка равновесия характеризуется тем, что длина изделия в ней сохраняется на протяжении длительного периода при условии отсутствия внешнего деформирующего усилия. Точка равновесия определяется в случае построения схемы.
  4. После достижения точки равновесия возникающая упругость начинает снижать скорость перемещения тела. Она действует в противоположном направлении. При этом возникает усилие, которое направлено в обратную сторону.
  5. Дойдя крайней точки тело начинает двигаться в противоположную сторону. В зависимости от жесткости установленной пружины подобное действие будет повторятся неоднократно. Протяженность этого цикла зависит от самых различных моментов. Примером можно назвать массу тела, а также максимальное приложенное усилие для возникновения деформации. В некоторых случаях колебательные движения практически незаметны, но они все же возникают.

Приведенная выше информация указывает на то, что колебательные движения совершаются за счет воздействия упругости. Деформация происходит за счет приложенного усилия, которое может варьировать в достаточно большом диапазоне, все зависит от конкретного случая.

Читайте также:  Таблица менделеева фото крупным планом фото

Уравнения колебаний пружинного маятника

Колебания пружинного маятника совершаются по гармоническому закону. Формула, по которой проводится расчет, выглядит следующим образом: F(t)=ma(t)=-mw2x(t).

В приведенной выше формуле указывается (w) радиальная частота гармонического колебания. Она свойственна силе, которая распространяется в границах применимости закона Гука. Уравнение движения может существенно отличаться, все зависит от конкретного случая.

Если рассматривать колебательное движение, то следует уделить внимание следующим моментам:

  1. Колебательные движения наблюдаются только в конце перемещения тела. Изначально оно прямолинейное до полного освобождения усилия. При этом сила упругости сохраняется на протяжении всего времени, пока тело находится в максимально отдаленном положении от нуля координат.
  2. После растяжения тело возвращается в исходное положение. Возникающая инерция становится причиной, по которой может оказываться воздействие на пружину. Инерция во многом зависит от массы тела, развитой скорости и многих других моментов.

В результате этого возникает колебание, которое может длиться в течение длительного периода. Приведенная выше формула позволяет провести расчет с учетом всех моментов.

Формулы периода и частоты колебаний пружинного маятника

При проектировании и вычислении основных показателей также уделяется довольно много внимания частоте и периоду колебания. Косинус – периодическая функция, в которой применяется значение, неизменяемое через определенный промежуток времени. Именно этот показатель называют период колебаний пружинного маятника. Для обозначения этого показателя применяется буква Т, также часто используется понятие, характеризующее значение, обратное периоду колебания (v). В большинстве случаев при расчетах применяется формула T=1/v.

Период колебаний вычисляется по несколько усложненной формуле. Она следующая: T=2п√m/k. Для определения частоты колебания используется формула: v=1/2п√k/m.

Рассматриваемая циклическая частота колебаний пружинного маятника зависит от следующих моментов:

  1. Масса груза, который прикреплен к пружине. Этот показатель считается наиболее важным, так как оказывает влияние на самые различные параметры. От массы зависит сила инерции, скорость и многие другие показатели. Кроме этого, масса груза – величина, с измерением которой не возникает проблем из-за наличия специального измерительного оборудования.
  2. Коэффициент упругости. Для каждой пружины этот показатель существенно отличается. Коэффициент упругости указывается для определения основных параметров пружины. Зависит этот параметр от количества витков, длины изделия, расстояние между витками, их диаметра и многого другого. Определяется он самым различным образом, зачастую при применении специального оборудования.

Не стоит забывать о том, что при сильном растяжении пружины закон Гука прекращает действовать. При этом период пружинного колебания начинает зависеть от амплитуды.

Для измерения периода применяется всемирная единица времени, в большинстве случаев секунды. В большинстве случаев амплитуда колебаний вычисляется при решении самых различных задач. Для упрощения процесса проводится построение упрощенной схемы, на которой отображаются основные силы.

Формулы амплитуды и начальной фазы пружинного маятника

Определившись с особенностями проходимых процессов и зная уравнение колебаний пружинного маятника, а также начальные значения можно провести расчет амплитуды и начальной фазы пружинного маятника. Для определения начальной фазы применяется значение f, амплитуда обозначается символом A.

Для определения амплитуды может использоваться формула: А=√x 2 +v 2 /w 2 . Начальная фаза высчитывается по формуле: tgf=-v/xw.

Применяя эти формулы можно провести определение основных параметров, которые применяются при расчетах.

Энергия колебаний пружинного маятника

Рассматривая колебание груза на пружине нужно учитывать тот момент, что при движение маятника может описываться двумя точками, то есть оно носит прямолинейный характер. Этот момент определяет выполнение условий, касающихся рассматриваемой силы. Можно сказать, что полная энергия потенциальная.

Провести расчет энергии колебаний пружинного маятника можно при учете всех особенностей. Основными моментами назовем следующее:

  1. Колебания могут проходить в горизонтальной и вертикальной плоскости.
  2. Ноль потенциальной энергии выбирается в качестве положения равновесия. Именно в этом месте устанавливается начало координат. Как правило, в этом положении пружина сохраняет свою форму при условии отсутствия деформирующей силы.
  3. В рассматриваемом случае рассчитываемая энергия пружинного маятника не учитывает силу трения. При вертикальном расположении груза сила трения несущественна, при горизонтальном тело находится на поверхности и при движении может возникнуть трение.
  4. Для расчета энергии колебания применяется следующая формула: E=-dF/dx.

Приведенная выше информация указывают на то, что закон сохранения энергии выглядит следующим образом: mx 2 /2+mw 2 x 2 /2=const. Применяемая формула говорит о следующем:

  1. Максимальная кинетическая энергия установленного маятника прямо пропорциональна максимальному значению потенциальной.
  2. На момент осциллятора среднее значение обоих сил равны.

Провести определение энергии колебания пружинного маятника можно при решении самых различных задач.

Свободные колебания пружинного маятника

Рассматривая то, чем вызваны свободные колебания пружинного маятника следует уделить внимание действию внутренних сил. Они начинают формироваться практически сразу после того, как телу было передано движение. Особенности гармонических колебаний заключаются в нижеприведенных моментах:

  1. Могут также возникать и другие типы сил воздействующего характера, который удовлетворяют все нормы закона, называются квазиупругими.
  2. Основными причинами действия закона могут быть внутренние силы, которые формируются непосредственно на момент изменения положения тела в пространстве. При этом груз обладает определенной массой, усилие создается за счет фиксации одного конца за неподвижный объект с достаточной прочностью, второго за сам груз. При условии отсутствия трения тело может совершать колебательные движения. В этом случае закрепленный груз называется линейным.

Не стоит забывать о том, что существует просто огромное количество различных видов систем, в которых осуществляется движение колебательного характера. В них также возникает упругая деформация, которая становится причиной применения для выполнения какой-либо работы.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Оцените статью
Добавить комментарий

Adblock
detector