Уравнения с целыми коэффициентами

В общем случае уравнение степени выше четвертой не разрешимо в радикалах. Однако, иногда можно отыскать корни многочлена, который находится в левой части уравнения высшей степени, представив его в виде призведения многочленов степени не выше четвертой. Таким образом, разложение многочлена на множители лежит в основе решения таких уравнений, поэтому, рекомендуем подробно изучить этот раздел, прежде чем двигаться дальше.

Достаточно часто рассматриваются уравнения высших степеней с целыми коэффициентами. В этом случае можно попытаться найти рациональные корни уравнения, после чего можно разложить на множители многочлен, находящийся в левой части исходного уравнения, тем самым перейти к нахождению корней уравнения, степень которого будет ниже.

В этой статье как раз разберемся с решением уравнений высших степеней с целыми коэффициентами.

Уравнения высших степеней с целыми коэффициентами.

Любое уравнение вида можно свести к приведенному уравнению той же степени домножив обе его части на и выполнив замену переменной вида :

Полученные коэффициенты тоже будут целыми.

Таким образом, будем решать приведенное уравнение степени n с целыми коэффициентами вида .

Находим целые корни уравнения.

Целые корни уравнения , i=1, 2, …, m ( m – количество целых корней уравнения) находятся среди делителей свободного члена . То есть, первым делом выписываем делители свободного члена и подставляем их по очереди в исходное равенство для проверки. Перебираем их по очереди, пока не получим тождество. Как только тождество получено, то первый целый корень уравнения найден и уравнение предстает в виде , где – корень уравнения, а – частное от деления на .

Продолжаем подставлять выписанные ранее делители в уравнение , начиная с (так как корни могут повторяться). Как только получаем тождество, то корень найден и уравнение предстает в виде , где – частное от деления на .

И так продолжаем перебор делителей, начиная с . В итоге найдем все m целых корней уравнения и оно представится в виде , где – многочлен степени n-m . Весь этот процесс удобно проводить по схеме Горнера.

Дробных корней приведенное уравнение с целыми коэффициентами иметь не может.

Находим оставшиеся корни (иррациональные и/или комплексные) из уравнения любым способом.

В общем случае уравнение, имеющее степень выше 4 , нельзя разрешить в радикалах. Но иногда мы все же можем найти корни многочлена, стоящего слева в уравнении высшей степени, если представим его в виде произведения многочленов в степени не более 4 -х. Решение таких уравнений базируется на разложении многочлена на множители, поэтому советуем вам повторить эту тему перед изучением данной статьи.

Чаще всего приходится иметь дело с уравнениями высших степеней с целыми коэффициентами. В этих случаях мы можем попробовать найти рациональные корни, а потом разложить многочлен на множители, чтобы потом преобразовать его в уравнение более низкой степени, которое будет просто решить. В рамках этого материала мы рассмотрим как раз такие примеры.

Уравнения высшей степени с целыми коэффициентами

Все уравнения, имеющие вид a n x n + a n – 1 x n – 1 + . . . + a 1 x + a 0 = 0 , мы можем привести к уравнению той же степени с помощью умножения обеих частей на a n n – 1 и осуществив замену переменной вида y = a n x :

a n x n + a n – 1 x n – 1 + . . . + a 1 x + a 0 = 0 a n n · x n + a n – 1 · a n n – 1 · x n – 1 + … + a 1 · ( a n ) n – 1 · x + a 0 · ( a n ) n – 1 = 0 y = a n x ⇒ y n + b n – 1 y n – 1 + … + b 1 y + b 0 = 0

Те коэффициенты, что получились в итоге, также будут целыми. Таким образом, нам нужно будет решить приведенное уравнение n-ной степени с целыми коэффициентами, имеющее вид x n + a n x n – 1 + … + a 1 x + a 0 = 0 .

Схема решения уравнения

Вычисляем целые корни уравнения. Если уравнение имеет целые корни, нужно искать их среди делителей свободного члена a 0 . Выпишем их и будем подставлять в исходное равенство по очереди, проверяя результат. Как только мы получили тождество и нашли один из корней уравнения, то можем записать его в виде x – x 1 · P n – 1 ( x ) = 0 . Здесь x 1 является корнем уравнения, а P n – 1 ( x ) представляет собой частное от деления x n + a n x n – 1 + … + a 1 x + a 0 на x – x 1 .

Подставляем остальные выписанные делители в P n – 1 ( x ) = 0 , начав с x 1 , поскольку корни могут повторяться. После получения тождества корень x 2 считается найденным, а уравнение может быть записано в виде ( x – x 1 ) ( x – x 2 ) · P n – 2 ( x ) = 0 .Здесь P n – 2 ( x ) будет частным от деления P n – 1 ( x ) на x – x 2 .

Продолжаем и дальше перебирать делители. Найдем все целые корни и обозначим их количество как m . После этого исходное уравнение можно представить как x – x 1 x – x 2 · … · x – x m · P n – m ( x ) = 0 . Здесь P n – m ( x ) является многочленом n – m -ной степени. Для подсчета удобно использовать схему Горнера.

Если у нас исходное уравнение имеет целые коэффициенты, мы не можем получить в итоге дробные корни.

У нас в итоге получилось уравнение P n – m ( x ) = 0 , корни которого могут быть найдены любым удобным способом. Они могут быть иррациональными или комплексными.

Покажем на конкретном примере, как применяется такая схема решения.

Условие: найдите решение уравнения x 4 + x 3 + 2 x 2 – x – 3 = 0 .

Решение

Начнем с нахождений целых корней.

Читайте также:  Схема компьютерного блока питания 200w

У нас есть свободный член, равный минус трем. У него есть делители, равные 1 , – 1 , 3 и – 3 . Подставим их в исходное уравнение и посмотрим, какие из них дадут в итоге тождества.

При x , равном единице, мы получим 1 4 + 1 3 + 2 · 1 2 – 1 – 3 = 0 , значит, единица будет корнем данного уравнения.

Теперь выполним деления многочлена x 4 + x 3 + 2 x 2 – x – 3 на ( х – 1 ) в столбик:

Значит, x 4 + x 3 + 2 x 2 – x – 3 = x – 1 x 3 + 2 x 2 + 4 x + 3 .

Перебираем возможные делители дальше, но подставляем их в равенство x 3 + 2 x 2 + 4 x + 3 = 0 :

1 3 + 2 · 1 2 + 4 · 1 + 3 = 10 ≠ 0 ( – 1 ) 3 + 2 · ( – 1 ) 2 + 4 · – 1 + 3 = 0

У нас получилось тождество, значит, мы нашли еще один корень уравнения, равный – 1 .

Делим многочлен x 3 + 2 x 2 + 4 x + 3 на ( х + 1 ) в столбик:

x 4 + x 3 + 2 x 2 – x – 3 = ( x – 1 ) ( x 3 + 2 x 2 + 4 x + 3 ) = = ( x – 1 ) ( x + 1 ) ( x 2 + x + 3 )

Подставляем очередной делитель в равенство x 2 + x + 3 = 0 , начиная с – 1 :

– 1 2 + ( – 1 ) + 3 = 3 ≠ 0 3 2 + 3 + 3 = 15 ≠ 0 ( – 3 ) 2 + ( – 3 ) + 3 = 9 ≠ 0

Равенства, полученные в итоге, будут неверными, значит, у уравнения больше нет целых корней.

Оставшиеся корни будут корнями выражения x 2 + x + 3 .

D = 1 2 – 4 · 1 · 3 = – 11 0

Из этого следует, что у данного квадратного трехчлена нет действительных корней, но есть комплексно сопряженные: x = – 1 2 ± i 11 2 .

Уточним, что вместо деления в столбик можно применять схему Горнера. Это делается так: после того, как мы определили первый корень уравнения, заполняем таблицу.

x i коэффициенты многочлена
1 1 2 – 1 – 3
1 1 1 + 1 · 1 = 2 2 + 2 · 1 = 4 – 1 + 4 · 1 = 3 – 3 + 3 · 1 = 0

В таблице коэффициентов мы сразу можем увидеть коэффициенты частного от деления многочленов, значит, x 4 + x 3 + 2 x 2 – x – 3 = x – 1 x 3 + 2 x 2 + 4 x + 3 .

После нахождения следующего корня, равного – 1 , мы получаем следующее:

x i коэффициенты многочлена
1 2 4 3
1 1 2 + 1 · ( – 1 ) = 1 4 + 1 · ( – 1 ) = 3 3 + 3 · ( – 1 ) = 0

Далее мы приходим к разложению x – 1 x + 1 x 2 + x + 3 = 0 . Потом, проверив оставшиеся делители равенства x 2 + x + 3 = 0 , вычисляем оставшиеся корни.

Ответ: х = – 1 , х = 1 , x = – 1 2 ± i 11 2 .

Условие: решите уравнение x 4 – x 3 – 5 x 2 + 12 = 0 .

Решение

У свободного члена есть делители 1 , – 1 , 2 , – 2 , 3 , – 3 , 4 , – 4 , 6 , – 6 , 12 , – 12 .

Проверяем их по порядку:

1 4 – 1 3 – 5 · 1 2 + 12 = 7 ≠ 0 ( – 1 ) 4 – ( – 1 ) 3 – 5 · ( – 1 ) 2 + 12 = 9 ≠ 0 2 4 · 2 3 – 5 · 2 2 + 12 = 0

Значит, x = 2 будет корнем уравнения. Разделим x 4 – x 3 – 5 x 2 + 12 на х – 2 , воспользовавшись схемой Горнера:

x i коэффициенты многочлена
1 – 1 – 5 12
2 1 – 1 + 1 · 2 = 1 – 5 + 1 · 2 = – 3 0 – 3 · 2 = 3 12 – 6 · 2 = 0

В итоге мы получим x – 2 ( x 3 + x 2 – 3 x – 6 ) = 0 .

Проверяем делители дальше, но уже для равенства x 3 + x 2 – 3 x – 6 = 0 , начиная с двойки.

2 3 + 2 2 – 3 · 2 – 6 = 0

Значит, 2 опять будет корнем. Разделим x 3 + x 2 – 3 x – 6 = 0 на x – 2 :

x i коэффициенты многочлена
1 1 – 3 – 6
2 1 1 + 1 · 2 = 3 – 3 + 3 · 2 = 3 – 6 + 3 · 2 = 0

В итоге получим ( x – 2 ) 2 · ( x 2 + 3 x + 3 ) = 0 .

Проверка оставшихся делителей смысла не имеет, поскольку равенство x 2 + 3 x + 3 = 0 быстрее и удобнее решить с помощью дискриминанта.

Решим квадратное уравнение:

x 2 + 3 x + 3 = 0 D = 3 2 – 4 · 1 · 3 = – 3 0

Получаем комплексно сопряженную пару корней: x = – 3 2 ± i 3 2 .

Ответ: x = – 3 2 ± i 3 2 .

Условие: найдите для уравнения x 4 + 1 2 x 3 – 5 2 x – 3 = 0 действительные корни.

Решение

x 4 + 1 2 x 3 – 5 2 x – 3 = 0 2 x 4 + x 3 – 5 x – 6 = 0

Выполняем домножение 2 3 обеих частей уравнения:

2 x 4 + x 3 – 5 x – 6 = 0 2 4 · x 4 + 2 3 x 3 – 20 · 2 · x – 48 = 0

Заменяем переменные y = 2 x :

2 4 · x 4 + 2 3 x 3 – 20 · 2 · x – 48 = 0 y 4 + y 3 – 20 y – 48 = 0

В итоге у нас получилось стандартное уравнение 4 -й степени, которое можно решить по стандартной схеме. Проверим делители, разделим и получим в итоге, что оно имеет 2 действительных корня y = – 2 , y = 3 и два комплексных. Решение целиком здесь мы не будем приводить. В силу замены действительными корнями данного уравнения будут x = y 2 = – 2 2 = – 1 и x = y 2 = 3 2 .

Ответ: x 1 = – 1 , x 2 = 3 2

Советуем также ознакомиться с материалами, посвященными решению кубических уравнений и уравнений четвертой степени.

Разделы: Математика

Класс: 9

  1. Закрепить понятие целого рационального уравнения -й степени.
  2. Сформулировать основные методы решения уравнений высших степеней (n > 3).
  3. Обучить основным методам решения уравнений высших степеней.
  4. Научить по виду уравнения определять наиболее эффективный способ его решения.

Формы, методы и педагогические приемы, которые используются учителем на уроке:

  • Лекционно-семинарская система обучения (лекции – объяснение нового материала, семинары – решение задач).
  • Информационно-коммуникационные технологии (фронтальный опрос, устная работа с классом).
  • Дифференцированное обучение, групповые и индивидуальные формы.
  • Использование исследовательского метода в обучении, направленного на развитие математического аппарата и мыслительных способностей каждого конкретного ученика.
  • Печатный материал – индивидуальный краткий конспект урока (основные понятия, формулы, утверждения, материал лекций сжато в виде схем или таблиц).
  1. Организационный момент.
    Цель этапа: включить учащихся в учебную деятельность, определить содержательные рамки урока.
  2. Актуализация знаний учащихся.
    Цель этапа: актуализировать знания учащихся по изученным ранее смежным темам
  3. Изучение новой темы (лекция). Цель этапа: сформулировать основные методы решения уравнений высших степеней (n > 3)
  4. Подведение итогов.
    Цель этапа: еще раз выделить ключевые моменты в материале, изученном на уроке.
  5. Домашнее задание.
    Цель этапа: сформулировать домашнее задание для учащихся.

1. Организационный момент.

Формулировка темы урока: “Уравнения высших степеней. Методы их решения”.

2. Актуализация знаний учащихся.

Теоретический опрос – беседа. Повторение некоторых ранее изученных сведений из теории. Учащиеся формулируют основные определения и дают формулировки необходимых теорем. Приводят примеры, демонстрируя уровень полученных ранее знаний.

  • Понятие уравнения с одной переменной.
  • Понятие корня уравнения, решения уравнения.
  • Понятие линейного уравнения с одной переменной, понятие квадратного уравнения с одной переменной.
  • Понятие равносильности уравнений, уравнения-следствия (понятие посторонних корней), переход не по следствию (случай потери корней).
  • Понятие целого рационального выражения с одной переменной.
  • Понятие целого рационального уравнения n-й степени. Стандартный вид целого рационального уравнения. Приведенное целое рациональное уравнение.
  • Переход к совокупности уравнений более низких степеней путем разложения исходного уравнения на множители.
  • Понятие многочлена n-й степени от x. Теорема Безу. Следствия из теоремы Безу. Теоремы о корнях (Z-корни и Q-корни) целого рационального уравнения с целыми коэффициентами (соответственно приведенного и неприведенного).
  • Схема Горнера.
Читайте также:  У программы windows installer недостаточно полномочий

3. Изучение новой темы.

Будем рассматривать целое рациональное уравнение n-й степени стандартного вида с одной неизвестной переменной x : Pn(x) = 0 , где Pn(x) = anx n + an-1x n-1 + a1x + a – многочлен n-й степени от x, an ≠ 0 . Если an = 1 то такое уравнение называют приведенным целым рациональным уравнением n-й степени. Рассмотрим такие уравнения при различных значениях n и перечислим основные методы их решения.

n = 1 – линейное уравнение.

n = 2 – квадратное уравнение. Формула дискриминанта. Формула для вычисления корней. Теорема Виета. Выделение полного квадрата.

n = 3 – кубическое уравнение.

Пример: x 3 – 4x 2 – x + 4 = 0 (x – 4)(x 2 – 1) = 0 x1 = 4 , x2 = 1, x3 = -1.

Возвратное кубическое уравнение вида ax 3 + bx 2 + bx + a = 0. Решаем, объединяя члены с одинаковыми коэффициентами.

Пример: x 3 – 5x 2 – 5x + 1 = 0 (x + 1)(x 2 – 6x + 1) = 0 x1 = -1, x2 = 3 + 2, x3 = 3 – 2.

Уравнение с целыми коэффициентами. Подбор Z-корней на основании теоремы. Схема Горнера. При применении этого метода необходимо сделать акцент на том, что перебор в данном случае конечный, и корни мы подбираем по определенному алгоритму в соответствии с теоремой о Z-корнях приведенного целого рационального уравнения с целыми коэффициентами.

Пример: x 3 – 9x 2 + 23x – 15 = 0. Уравнение приведенное. Выпишем делители свободного члена <+1; +3; +5; +15>. Применим схему Горнера:

x 3 x 2 x 1 x 0 вывод
1 -9 23 -15
1 1 1 х 1 – 9 = -8 1 х (-8) + 23 = 15 1 х 15 – 15 = 0 1 – корень
x 2 x 1 x 0

Получаем (x – 1)(x 2 – 8x + 15) = 0 x1 = 1, x2 = 3, x3 = 5.

Уравнение с целыми коэффициентами. Подбор Q-корней на основании теоремы. Схема Горнера. При применении этого метода необходимо сделать акцент на том, что перебор в данном случае конечный и корни мы подбираем по определенному алгоритму в соответствии с теоремой о Q-корнях неприведенного целого рационального уравнения с целыми коэффициентами.

Пример: 9x 3 + 27x 2 – x – 3 = 0. Уравнение неприведенное. Выпишем делители свободного члена <+1; +3>. Выпишем делители коэффициента при старшей степени неизвестного. <+1; +3; +9> Следовательно, корни будем искать среди значений <+1; +; +; +3>. Применим схему Горнера:

x 3 x 2 x 1 x 0 вывод
9 27 -1 -3
1 9 1 x 9 + 27 = 36 1 x 36 – 1 = 35 1 x 35 – 3 = 32 ≠ 0 1 – не корень
-1 9 -1 x 9 + 27 = 18 -1 x 18 – 1 = -19 -1 x (-19) – 3 = 16 ≠ 0 -1 – не корень
9 x 9 + 27 = 30 x 30 – 1 = 9 x 9 – 3 = 0 корень
x 2 x 1 x 0

Получаем (x)(9x 2 + 30x + 9) = 0 x1 = , x2 = – , x3 = -3.

Для удобства подсчета при подборе Q-корней бывает удобно сделать замену переменной, перейти к приведенному уравнению и подбирать Z-корни.

  • Если можно воспользоваться заменой вида y = kx

.

Формула Кардано. Существует универсальный метод решения кубических уравнений – это формула Кардано. Эту формулу связывают с именами итальянских математиков Джероламо Кардано (1501–1576), Николо Тарталья (1500–1557), Сципиона дель Ферро (1465–1526). Эта формула лежит за рамками нашего курса.

n = 4 – уравнение четвертой степени.

Пример: x 4 + 2x 3 + 5x 2 + 4x – 12 = 0 (x 4 + 2x 3 ) + (5x 2 + 10x) – (6x + 12 ) = 0 (x + 2)(x 3 + 5x – 6) = 0 (x + 2)(x – 1)(x 2 + x + 6) = 0 x1 = -2, x2 = 1.

Метод замены переменной.

  • Возвратное уравнение четвертой степени вида ax 4 + bx 3 + cx 2 + bx + a = 0.

Решаем, объединяя члены с одинаковыми коэффициентами, путем замены вида

  • Обобщенное возвратное уравнение четвертой степени вида ax 4 + bx 3 + cx 2 – bx + a = 0.

  • Обобщенное возвратное уравнение четвертой степени вида ax 4 + bx 3 + cx 2 + kbx + k 2 a = 0.

  • Замена общего вида. Некоторые стандартные замены.

Пример 3. Замена общего вида (вытекает из вида конкретного уравнения).

Уравнение с целыми коэффициентами. Подбор Z-корней на основании теоремы. Схема Горнера. Алгоритм аналогичен рассмотренному выше для n = 3.

Уравнение с целыми коэффициентами. Подбор Q-корней на основании теоремы. Схема Горнера. Алгоритм аналогичен рассмотренному выше для n = 3.

Формула общего вида. Существует универсальный метод решения уравнений четвертой степени. Эту формулу связывают с именем Людовико Феррари (1522–1565). Эта формула лежит за рамками нашего курса.

n > 5 – уравнения пятой и более высоких степеней.

Уравнение с целыми коэффициентами. Подбор Z-корней на основании теоремы. Схема Горнера. Алгоритм аналогичен рассмотренному выше для n = 3.

Уравнение с целыми коэффициентами. Подбор Q-корней на основании теоремы. Схема Горнера. Алгоритм аналогичен рассмотренному выше для n = 3.

Симметрические уравнения. Любое возвратное уравнение нечетной степени имеет корень x = -1 и после разложения его на множители получаем, что один сомножитель имеет вид (x + 1), а второй сомножитель – возвратное уравнение четной степени (его степень на единицу меньше, чем степень исходного уравнения). Любое возвратное уравнение четной степени вместе с корнем вида x = φ содержит и корень вида . Используя эти утверждения, решаем задачу, понижая степень исследуемого уравнения.

Читайте также:  Стык панелей в панельном доме

Метод замены переменной. Использование однородности.

Не существует формулы общего вида для решения целых уравнений пятой степени (это показали итальянский математик Паоло Руффини (1765–1822) и норвежский математик Нильс Хенрик Абель (1802–1829)) и более высоких степеней (это показал французский математик Эварист Галуа (1811–1832)).

  • Напомним еще раз, что на практике возможно использование комбинации перечисленных выше методов. Удобно переходить к совокупности уравнений более низких степеней путем разложения исходного уравнения на множители.
  • За рамками нашего сегодняшнего обсуждения остались широко используемые на практике графические методы решения уравнений и методы приближенного решения уравнений высших степеней.
  • Бывают ситуации, когда у уравнения нет R-корней. Тогда решение сводится к тому, чтобы показать, что уравнение корней не имеет. Для доказательства анализируем поведение рассматриваемых функций на промежутках монотонности. Пример: уравнение x 8 – x 3 + 1 = 0 не имеет корней.
  • Использование свойства монотонности функций. Бывают ситуации, когда использование различных свойств функций позволяет упростить поставленную задачу.
    Пример 1: уравнение x 5 + 3x – 4 = 0 имеет один корень x = 1. По свойству монотонности анализируемых функций других корней нет.
    Пример 2: уравнение x 4 + (x – 1) 4 = 97 имеет корни x1 = -2 и x2 = 3. Проанализировав поведение соответствующих функций на промежутках монотонности, заключаем, что других корней нет.

4. Подведение итогов.

Резюме: Теперь мы овладели основными методами решения различных уравнений высших степеней (для n > 3). Наша задача научиться эффективно использовать перечисленные выше алгоритмы. В зависимости от вида уравнения мы должны будем научиться определять, какой способ решения в данном случае является наиболее эффективным, а также правильно применять выбранный метод.

5. Домашнее задание.

[1]: п.7, стр. 164–174, №№ 33–36, 39–44, 46,47.

[4]: №№ 9.1–9.4, 9.6–9.8, 9.12, 9.14–9.16, 9.24–9.27.

Возможные темы докладов или рефератов по данной тематике:

  • Формула Кардано
  • Графический метод решения уравнений. Примеры решения.
  • Методы приближенного решения уравнений.

Анализ усвоения материала и интереса учащихся к теме:

Опыт показывает, что интерес учащихся в первую очередь вызывает возможность подбора Z-корней и Q-корней уравнений при помощи достаточно простого алгоритма с использованием схемы Горнера. Также учащиеся интересуются различными стандартными типами замены переменных, которые позволяют существенно упрощать вид задачи. Особый интерес обычно вызывают графические методы решения. В этом случае дополнительно можно разобрать задачи на графический метод решения уравнений; обсудить общий вид графика для многочлена 3, 4, 5 степени; проанализировать, как связано число корней уравнений 3, 4, 5 степени с видом соответствующего графика. Ниже приведен список книг, в которых можно найти дополнительную информацию по данной тематике.

  1. Виленкин Н.Я. и др. “Алгебра. Учебник для учащихся 9 классов с углубленным изучением математики” – М., Просвещение, 2007 – 367 с.
  2. Виленкин Н.Я., Шибасов Л.П., Шибасова З.Ф. “За страницами учебника математики. Арифметика. Алгебра. 10-11 класс” – М., Просвещение, 2008 – 192 с.
  3. Выгодский М.Я. “Справочник по математике” – М., АСТ, 2010 – 1055 с.
  4. Галицкий М.Л. “Сборник задач по алгебре. Учебное пособие для 8-9 классов с углубленным изучением математики” – М., Просвещение, 2008 – 301 с.
  5. Звавич Л.И. и др. “Алгебра и начала анализа. 8–11 кл. Пособие для школ и классов с углубленным изучением математики” – М., Дрофа, 1999 – 352 с.
  6. Звавич Л.И., Аверьянов Д.И., Пигарев Б.П., Трушанина Т.Н. “Задания по математике для подготовки к письменному экзамену в 9 классе” – М., Просвещение, 2007 – 112 с.
  7. Иванов А.А., Иванов А.П. “Тематические тесты для систематизации знаний по математике” ч.1 – М., Физматкнига, 2006 – 176 с.
  8. Иванов А.А., Иванов А.П. “Тематические тесты для систематизации знаний по математике” ч.2 – М., Физматкнига, 2006 – 176 с.
  9. Иванов А.П. “Тесты и контрольные работы по математике. Учебное пособие”. – М., Физматкнига, 2008 – 304 с.
  10. Лейбсон К.Л. “Сборник практических заданий по математике. Часть 2–9 класс” – М., МЦНМО, 2009 – 184 с.
  11. Макарычев Ю.Н., Миндюк Н.Г. “Алгебра. Дополнительные главы к школьному учебнику 9 класса. Учебное пособие для учащихся школ и классов с углубленным изучением математики.” – М., Просвещение, 2006 – 224 с.
  12. Мордкович А.Г. “Алгебра. Углубленное изучение. 8 класс. Учебник” – М., Мнемозина, 2006 – 296 с.
  13. Савин А.П. “Энциклопедический словарь юного математика” – М., Педагогика, 1985 – 352 с.
  14. Сурвилло Г.С., Симонов А.С. “Дидактические материалы по алгебре для 9 класса с углубленным изучением математики” – М., Просвещение, 2006 – 95 с.
  15. Чулков П.В. “Уравнения и неравенства в школьном курсе математик. Лекции 1–4” – М., Первое сентября, 2006 – 88 с.
  16. Чулков П.В. “Уравнения и неравенства в школьном курсе математик. Лекции 5–8” – М., Первое сентября, 2009 – 84 с.
Оцените статью
Добавить комментарий

Adblock
detector